Читаем Большая Советская Энциклопедия (ТУ) полностью

  Стабильность тока Т. э. обеспечивается постоянством распределения j и a вдоль поверхности эмиттера. Обе величины могут изменяться под влиянием адсорбции и миграции атомов как посторонних веществ, так и материала эмиттера. Локальные a возрастают при миграции материала поверхности в присутствии сильного электрического поля. В пространстве катод — анод и на поверхности анода электронный пучок создаёт положительные ионы, которые бомбардируют эммитер, разрушая его поверхность. Поэтому повышение стабильности Т. э. связано с улучшением вакуума и очисткой электродов, использованием импульсного напряжения, умеренным подогревом эмиттера для защиты от адсорбции остаточных газов и заглаживания дефектов в местах удара ионов. В сверхвысоком вакууме (где поверхность эмиттера остаётся чистой в течение часов или суток) была исследована Т. э. монокристаллов практически всех тугоплавких металлов, а также химических соединений с металлической электропроводностью ZrC, LaB6 и др. Наиболее полно изучена Т. э. W, Мо и Re.

  Применения Т. э. металлов связаны с возможностью получения больших токов либо интенсивных электронных пучков. Холодные металлические катоды перспективны и используются в сильноточных устройствах: для получения рентгеновских вспышек или электронных пучков, выводимых наружу сквозь тонкую фольгу; для накачки в квантовых генераторах; для формирования электронных сгустков при коллективном ускорении тяжёлых ионов (см. Ускорители заряженных частиц). Нелинейность вольтамперной характеристики приборов с Т. э. используется в умножителях частоты и смесителях, в усилителях и детекторах сигналов СВЧ и т.д. Автоэлектронный эмиттер как интенсивный точечный источник электронов применяется в растровых электронных микроскопах. Он перспективен в рентгеновской и электронной микроскопии, в рентгеновских микроанализаторах и электроннолучевых приборах высокого разрешения. Автоэлектронные катоды перспективны в микроэлектронике и как чувствительные датчики изменения напряжения. Важное значение имеет также Т. э. из металла в диэлектрик (см. Диэлектрическая электроника). Сочетание автоэлектронного эмиттера и анода, совмещенного с люминесцирующим экраном, образует эмиссионный электронный микроскоп. На его экране можно наблюдать угловое распределение электронов Т. э. с острия при увеличении ~ 105—106 и разрешающей способности 20—60 Å (см. Электронный проектор).

  Т. э. полупроводников изучена менее полно. Она характеризуются более сложными зависимостями плотности тока j от поля Е и j и энергетических спектров электронов. При Т. э. полупроводников электрическое поле, проникая в кристалл, смещает энергетические зоны и локально изменяет концентрации носителей заряда и их энергетические распределения. Кроме того в полупроводниках концентрация электронов проводимость меньше, чем в случае металлов, что ограничивает величину j. Внешнее воздействия, сильно влияющие на концентрацию электронов (температура, освещение и др.), также заметно изменяют j. Вольтамперные зависимости j (E) и энергетические спектры электронов отражают зонную структуру полупроводников. Ток, текущий через полупроводник, может перераспределять потенциал на образце и влиять на энергетическое распределение электронов.

  Туннельные полупроводниковые эмиттеры, реагирующие на свет, перспективны как чувствительные приёмники инфракрасного излучения. Многоострийные системы таких эмиттеров могут служить основой для мозаичных систем в преобразователях инфракрасных изображений. В некоторых случаях, когда вольтамперные характеристики полупроводника всецело определяются его объёмными свойствами, j слабо зависит от Е и j. При этом точечный не накаливаемый источник электронов может длительно и стабильно работать даже в относительно невысоком вакууме.

  Лит.: Wood R. W., «Phus. Rev.», 1897, v. 5,.№ 1; Millikan R. A., Lauritsen С. С., «Phys. Rev.», 1929, v. 33, № 4, р. 598; Fowler R. H., Nordheim L., «Proc. Poy. Soc.», 1928, ser. A, v. 119, № 781, p. 173; Nordheim L., «Phys. Zs.», 1929, № 7, s. 177; Елинсон М. И., Васильев Г. Ф., Автоэлектронная эмиссия, М., 1958; Ненакаливаемые катоды, под ред. М. И. Елинсона, М., 1974; Фишер Р., Нойман Х. Автоэлектронная эмиссия полупроводников, пер. с нем., М., 1971.

  В. Н. Шредник.

Рис. 2. Энергетический спектр электронов, испускаемых при туннельной эмиссии для разных температур Т и электрических полей Е; j = 4,5 эв.

Рис. 1. Потенциальная энергия u электрона вблизи поверхности металла (х — расстояние от поверхности); Е1 — в отсутствии электрического поля; Е2 — в однородном внешнем электрическом поле; Е3 — суммарная потенциальная энергия электрона; ЕF — энергия Ферми металла; Х2Х1 — ширина потенциального барьера в присутствии поля.

Туннельный диод

Перейти на страницу:

Похожие книги

100 великих тайн Второй мировой
100 великих тайн Второй мировой

Самая тяжёлая и кровопролитная война в истории человечества — Вторая мировая — оставила нам множество неразгаданных тайн и загадок. Среди них: борьба за Копьё Оттона и странный полёт Гесса в Англию, трагедия Катыни и блокада Ленинграда, Ржевская битва («второй Сталинград») и операция в Манильской бухте, засекреченные катастрофы кораблей и пропажи художественных ценностей… Подвиги разведчиков и покушения на вождей и полководцев, героизм подпольщиков и партизан и подлость коллаборационистов, погоня за новейшими образцами техники и странные действия политиков, пропагандистские акции и финансовые диверсии…Обо всём этом увлекательно повествуется на страницах очередной книги из серии «100 великих».

Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии
Символы, святыни и награды Российской державы. часть 1
Символы, святыни и награды Российской державы. часть 1

В книге представлена богатейшая история развития российской символики, повествуется о том, как по мере становления и укрепления государства рождались и видоизменялись главные отличительные знаки его суверенитета – герб, флаг и гимн, как утверждалась символика Русской православной церкви, рассказывается о наиболее чтимых православных святынях, как век за веком складывалась наградная система.Читатель найдет здесь много интересных фактов и о тех людях, чье верное служение Родине было отмечено почетными наградами.Большое количество иллюстраций делает излагаемый материал более ярким, наглядным и интересным.

Александр Александрович Кузнецов , Александр Владимирович Казакевич , Александр Казакевич , Александр Кузнецов , Вольдемар Николаевич Балязин , Надежда Соболева

Энциклопедии / Словари и Энциклопедии