В анизотропном кристалле упругие свойства описываются тензором
4-го ранга, число независимых компонент которого обусловлено симметрией кристалла. Поглощение звука (и вообще упругих волн) в Т. т. обусловлено: неодинаковостью температуры в разных участках Т. т. при прохождении по нему волны и возникновением в результате этого необратимых тепловых потоков (теплопроводность); конечностью скорости движения частиц Т. т. Необратимые процессы рассеяния, связанные с конечностью скорости движения, называются внутренним трением, или вязкостью. В идеальных кристаллах теплопроводность и вязкость определяются столкновениями квазичастиц друг с другом, в реальных кристаллах к этим процессам добавляется рассеяние звуковых волн на дефектах кристаллической решётки, важную роль играет также диффузия. Исследование поглощения звука — метод изучения динамических свойств Т. т., в частности свойств квазичастиц. Механические свойства Т. т. — основа их инженерного применения как конструкционных материалов. В частности, знание связи деформаций и напряжений позволяет решать конкретные практические задачи о распределении напряжений и деформаций в Т. т. различной формы (балки, пластины, оболочки и т. п.) при разнообразных нагрузках — изгибе, кручении (см. Сопротивление материалов
). Движение частиц в Т. т.
Фононы. Исследование теплового движения частиц в конденсированных средах приводит к понятию фононов. Если N — число ячеек кристалла, а n — число атомов (ионов) в элементарной ячейке, то 3Nn — полное степеней свободы число атомов кристалла, совершающих колебательное движение вблизи положений равновесия. Колебательный характер их движения сохраняется вплоть до температуры плавления Тпл. При Т = Тпл средняя амплитуда колебания атома меньше межатомного расстояния. Плавление обусловлено тем, что термодинамический потенциал жидкости при Т > Тпл меньше термодинамического потенциала Т. т. В первом (гармония.) приближении систему с 3Nn колебательными степенями свободы можно рассматривать как совокупность 3Nn независимых осцилляторов, каждый из которых соответствует отдельному нормальному колебанию.
В кристалле с нарушениями периодичности (дефектами) среди нормальных колебаний имеются особые, в которых участвуют не все атомы кристалла, а только локализованные вблизи дефекта (например, чужеродного атома). Такие колебания называются локальными. Хотя их число невелико, они в ряде случаев определяют некоторые физические свойства (оптические свойства, особенности Мёссбауэра эффекта и др.). Вблизи поверхности в Т. т. могут распространяться локальные поверхностные волны, амплитуда которых экспоненциально уменьшается при удалении от поверхности (Рэлея волны). Подобные волны могут распространяться также и внутри кристалла вдоль плоских дефектов (например, границ кристаллических зёрен) и вдоль дислокаций. Нормальное колебание — волна смещений атомов из положения равновесия. Существует 3n типов нормальных колебаний (для простых решёток n = 1). Каждая волна характеризуется волновым вектором k
и частотой w. Разным типам нормальных колебаний соответствуют различные зависимости: ws (k)(s = 1, 2,..., 3n), называемые законом дисперсии. Периодичность в расположении атомов приводит к тому, что все величины, зависящие от k, в кристалле оказываются также периодическими функциями. Например, ws (k + 2pb) = ws (k), где b — произвольный вектор обратной решётки. Зная силы взаимодействия между структурными частицами кристалла, можно рассчитать законы дисперсии. Существуют и экспериментальные методы их определения. Наиболее результативный из них — неупругое рассеяние медленных нейтронов
в кристаллах. Некоторые выводы о законе дисперсии можно сделать, исходя из общих положений: среди нормальных колебаний должны быть такие, которые при больших длинах волн (по сравнению с межатомными расстояниями) соответствуют обычным звуковым волнам в кристалле. Таких волн три (для упругоизотропного тела — две волны поперечные и одна продольная), причём для всех трёх частота w — однородная функция 1-го порядка от компонент вектора k, обращающаяся в нуль при k = 0, то есть для трёх из 3n типов нормальных колебаний закон дисперсии при малых значениях волнового вектора имеет вид: