Читаем Большая Советская Энциклопедия (УП) полностью

  Большой практических интерес представляют задачи У. т. для неоднородных тел. В этих задачах коэффициент l, m в уравнении (1) являются не константами, а функциями координат, определяющими поле упругих свойств тела, которое иногда задают статистически (в виде некоторых функций распределения). Применительно к этим задачам разрабатываются статистические методы У. т., отражающие статистическую природу свойств поликристаллических тел.

  В динамических задачах У. т. искомые величины являются функциями координат и времени. Исходными для математического решения этих задач являются дифференциальные уравнения движения, отличающиеся от уравнений (4) тем, что правые части вместо нуля содержат инерционные члены   и т.д. К исходным уравнениям должны также присоединяться уравнения (1), (5) и, кроме граничных условий (6), (7), ещё задаваться начальные условия, определяющие, например, распределение перемещении и скоростей частиц тела в начальный момент времени. К этому типу относятся задачи о колебаниях конструкций и сооружений, в которых могут определяться формы колебаний и их возможные смены, амплитуды колебаний и их нарастание или убывание во времени, резонансные режимы, динамические напряжения, методы возбуждения и гашения колебаний и др., а также задачи о распространении упругих волн (сейсмические волны и их воздействие на конструкции и сооружения, волны, возникающие при взрывах и ударах, термоупругие волны и т.д.).

  Одной из современных проблем У. т. является математическая постановка задач и разработка методов их решения при конечных (больших) упругих деформациях.

  Экспериментальные методы У. т. (метод многоточечного тензометрирования, поляризационно-оптический метод исследования напряжений, метод муаров и др.) позволяют в некоторых случаях непосредственно определить распределение напряжений и деформаций в исследуемом объекте или на его поверхности. Эти методы используются также для контроля решений, полученных аналитическими и численными методами, особенно когда решения найдены при каких-нибудь упрощающих допущениях. Иногда эффективными оказываются экспериментально-теоретические методы, в которых частичная информация об искомых функциях получается из опытов.

  Лит.: Ляв А., Математическая теория упругости, пер. с англ., М. – Л., 1935; Лейбензон Л. С., Курс теории упругости, 2 изд., М. – Л., 1947; Мусхелишвили Н. И., Некоторые основные задачи математической теории упругости, 5 изд., М., 1966; Трёхмерные задачи математической теории упругости, Тб., 1968; Лурье А. И., Теория упругости, М., 1970; Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., т. 1–2, М., 1955; Теория температурных напряжений, пер. с англ., М., 1964; Снеддон И. Н., Берри Д. С., Классическая теория упругости, пер. с англ., М., 1961; Тимошенко С. П., Гудьер Дж. Н., Теория упругости, пер. с англ., М., 1975.

  А. А. Ильюшин, В. С. Ленский.

Упругость

Упру'гость, свойство макроскопических тел сопротивляться изменению их объёма или формы под воздействием механических напряжений. При снятии приложенного напряжения объём и форма упруго деформированного тела восстанавливаются.

  У. тел обусловлена силами взаимодействия атомов, из которых они построены. В твёрдых телах при температуре абсолютного нуля в отсутствии внешних напряжений атомы занимают равновесные положения, в которых сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна. Кроме сил притяжения и отталкивания, зависящих только от расстояния (рис. 1 ) между атомами (центральные силы), в многоатомных молекулах и макроскопических телах действуют также угловые силы, зависящие от т. н. валентных углов между прямыми, соединяющими данный атом с различными его соседями (рис. 2 ). При равновесных значениях валентных углов угловые силы также уравновешены. Энергия макроскопического тела зависит от межатомных расстояний и валентных углов, принимая минимальное значение при равновесных значениях этих параметров.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже