Современная вычислительная техника позволяет решать многие проблемы У. линейных и нелинейных САУ различных классов как путём использования известных алгоритмов
,
так и на основе новых специфических алгоритмов, рассчитанных на возможности современных ЭВМ и вычислительных систем.
Лит.:
Ляпунов А. М., Общая задача об устойчивости движения, Собр. соч., т. 2, М. – Л., 1956; Воронов А. А., Основы теории автоматического управления, т, 2, М. – Л., 1966; Наумов Б. Н., Теория нелинейных автоматических систем. Частотные методы, М., 1972; Основы автоматического управления, под ред. В. С. Пугачева, 3 изд., М., 1974. В. С. Пугачев, И. Н. Синицын.
Устойчивость сооружения
Усто'йчивость сооруже'ния,
способность сооружения противостоять действию сил, стремящихся вывести его из состояния равновесия. Необходимость обеспечения устойчивости (наряду с прочностью) – одно из основных требований, предъявляемых к сооружениям. Следствием потери устойчивости обычно является сдвиг (скольжение) или опрокидывание сооружения. Проверка У. с. необходима в первую очередь в тех случаях, когда на сооружение действуют горизонтальные силы (гидростатическое давление на плотину, давление грунта на подпорную стенку или устой моста, сейсмические и ветровые нагрузки на высотные сооружения и т.п.). При проверке У. с. на опрокидывание сопоставляются значения опрокидывающего и удерживающего моментов относительно внешнего ребра фундамента. Проверка У. с. на сдвиг требует сопоставления сдвигающих (обычно горизонтальных) сил, действующих на сооружение, с удерживающими (реактивными) силами, например силами трения или сцепления. См. также Устойчивость основания
, Устойчивость упругих систем
.Устойчивость термодинамическая
Усто'йчивость термодинами'ческая,
устойчивость равновесия термодинамического
системы относительно малых вариаций её термодинамических параметров (объёма, давления, температуры и др.). В общем случае состояние равновесия характеризуется минимальным значением потенциала термодинамического
,
соответствующего независимым в условиях опыта переменным. Например, при независимых переменных энтропии, объёме и числе молей компонентов для термодинамического равновесия системы необходимо, чтобы была минимальна её внутренняя энергия
U.
Из этого требования вытекает, во-первых, что должна быть равна нулю первая вариация dU
при малых вариациях переменных и постоянстве полной энтропии, объёма и числа частиц. Отсюда как условие равновесия следует постоянство температуры и давления для всех фаз, а также равенство значений химического потенциала
для каждого из компонентов в сосуществующих фазах. Выполнение этих условий ещё не гарантирует У. т. системы. Из требования минимума U
вытекает ещё одно условие – положительное значение второй вариации d2U.
Оно приводит к ряду термодинамических неравенств, которые являются условиями термодинамической устойчивости. Например, одно из них состоит в положительном значении теплоёмкости системы при постоянном объёме, а другое – в убывании давления с ростом объёма при постоянной температуре. В общем случае условие У. т. можно сформулировать в виде следующего принципа: внешнее воздействие, выводящее систему из состояния равновесия, стимулирует в нём процессы, стремящиеся ослабить результаты этого воздействия (см. Ле Шателье – Брауна принцип
).
Полная теория У. т. как для гомогенных, так и для гетерогенных систем была разработана в конце 19 в. Дж. У. Гиббсом
.
Свойством У. т. может в определённой степени обладать и метастабильное равновесие, которому хотя и соответствует минимум внутренней энергии или др. термодинамического потенциала, но этот минимум лежит выше основного минимума, определяющего наиболее устойчивое состояние (см. Метастабильное состояние
). Д. Н. Зубарев.
Устойчивость транспортных машин