Читаем Большая Советская Энциклопедия (УС) полностью

Усто'йчивость равнове'сия. Равновесие механической системы устойчиво, если при малом возмущении (смещении, толчке) точки системы во всё последующее время мало отклоняются от их равновесных положений; в противном случае равновесие неустойчиво. Обычно при малых возмущениях точки системы, находящейся в положении устойчивого равновесия, совершают около своих равновесных положений малые колебания, которые вследствие сопротивлений со временем затухают, и равновесие восстанавливается. Более строго У. р. определяется и исследуется так же, как и устойчивость движения . В случае механической консервативной системы достаточное условие У. р. даётся теоремой Лагранжа – Дирихле, согласно которой равновесие устойчиво, если в положении равновесия потенциальная энергия системы минимальна. См. также Устойчивость упругих систем .

Устойчивость системы автоматического управления

Усто'йчивость системы автоматического управления, способность системы автоматического управления (САУ) нормально функционировать и противостоять различным неизбежным возмущениям (воздействиям). Состояние САУ называется устойчивым, если отклонение от него остаётся сколь угодно малым при любых достаточно малых изменениях входных сигналов. У. САУ разного типа определяется различными методами. Точная и строгая теория У. систем, описываемых обыкновенными дифференциальными уравнениями, создана А. М. Ляпуновым в 1892.

  Все состояния линейной САУ либо устойчивы, либо неустойчивы, поэтому можно говорить об У. системы в целом. Для У. стационарной линейной СЛУ, описываемой обыкновенными дифференциальными уравнениями, необходимо и достаточно, чтобы все корни соответствующего характеристического уравнения имели отрицательные действительные части (тогда САУ асимптотически устойчива). Существуют различные критерии (условия), позволяющие судить о знаках корней характеристического уравнения, не решая это уравнение – непосредственно по его коэффициентам. При исследовании У. САУ, описываемых дифференциальными уравнениями невысокого порядка (до 4-го), пользуются критериями Рауса и Гурвица (Э. Раус, англ. механик; А. Гурвиц, нем. математик). Однако этими критериями пользоваться во многих случаях (например, в случае САУ, описываемых уравнениями высокого порядка) практически невозможно из-за необходимости проведения громоздких расчётов; кроме того, само нахождение характеристических уравнений сложных САУ сопряжено с трудоёмкими математическими выкладками. Между тем частотные характеристики любых сколь угодно сложных СЛУ легко находятся посредством простых графических и алгебраических операций. Поэтому при исследовании и проектировании линейных стационарных САУ обычно применяют частотные критерии Найквиста и Михайлова (Х. Найквист, амер. физик; А. В. Михайлов, сов. учёный в области автоматического управления). Особенно прост и удобен в практическом применении критерий Найквиста. Совокупность значений параметров САУ, при которых система устойчива, называется областью У. Близость САУ к границе области У. оценивается запасами У. по фазе и по амплитуде, которые определяют по амплитудно-фазовым характеристикам разомкнутой САУ. Современная теория линейных САУ даёт методы исследования У. систем с сосредоточенными и с распределёнными параметрами, непрерывных и дискретных (импульсных), стационарных и нестационарных.

  Проблема У. нелинейных САУ имеет ряд существенных особенностей в сравнении с линейными. В зависимости от характера нелинейности в системе одни состояния могут быть устойчивыми, другие – неустойчивыми. В теории У. нелинейных систем говорят об У. данного состояния, а не системы как таковой. У. какого-либо состояния нелинейной САУ может сохраняться, если действующие возмущения достаточно малы, и нарушаться при больших возмущениях. Поэтому вводятся понятия У. в малом, большом и целом. Важное значение имеет понятие абсолютной У., т. е. У. САУ при произвольном ограниченном начальном возмущении и любой нелинейности системы (из определённого класса нелинейностей). Исследование У. нелинейных САУ оказывается довольно сложным даже при использовании ЭВМ. Для нахождения достаточных условий У. часто применяют метод функций Ляпунова. Достаточные частотные критерии абсолютной У. предложены рум. математиком В. М. Поповым и др. Наряду с точными методами исследования У. применяются приближённые методы, основанные на использовании описывающих функций, например методы гармонической или статистической линеаризации .

  Устойчивость САУ при воздействии на неё случайных возмущений и помех изучается теорией У. стохастических систем.

  Современная вычислительная техника позволяет решать многие проблемы У. линейных и нелинейных САУ различных классов как путём использования известных алгоритмов , так и на основе новых специфических алгоритмов, рассчитанных на возможности современных ЭВМ и вычислительных систем.

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 великих рекордов стихий
100 великих рекордов стихий

Если приглядеться к статистике природных аномалий хотя бы за последние два-три года, станет очевидно: наша планета пустилась во все тяжкие и, как пугают нас последователи Нострадамуса, того и гляди «налетит на небесную ось». Катаклизмы и необъяснимые явления следуют друг за другом, они стали случаться даже в тех районах Земли, где люди отроду не знали никаких природных напастей. Не исключено, что скоро Земля не сможет носить на себе почти 7-миллиардное население, и оно должно будет сократиться в несколько раз с помощью тех же природных катастроф! А может, лучше человечеству не доводить Землю до такого состояния?В этой книге рассказывается о рекордах бедствий и необъяснимых природных явлений, которые сотрясали нашу планету и поражали человечество на протяжении его истории.

Николай Николаевич Непомнящий

Геология и география / Энциклопедии / Словари и Энциклопедии