Читаем Большая Советская энциклопедия (ВА) полностью

  б) при t = to и t = T она должна принимать значения

  х (to ) = х0 , х (Т) = хт .     (2)

  Обе задачи, рассмотренные в начале статьи, являются частными случаями простейшей задачи В. и.

  Первые вариационные задачи были задачами механики. Они были поставлены в 18 в. и, следуя традициям того времени, первый вопрос, на который надо было ответить, был вопрос о способе фактического отыскания функции x (t ), реализующей минимум функционала (1).

  Эйлер создал численный метод решения задач В. и., который получил название Эйлера метода ломаных . Этот метод был первым среди большого класса, так называемых, прямых методов ; все они основаны на редукции задачи отыскания экстремума функционала к задаче отыскания экстремума функции многих переменных. Поскольку для получения решения с высокой точностью задачу приходится сводить к отысканию экстремума функции с большим числом переменных, она становится весьма сложной для ручного счёта. Поэтому долгое время прямые методы были вне основного русла, по которому направлялись усилия математиков, занимавшихся В. и.

  В 20 в. интерес к прямым методам значительно усилился. Прежде всего были предложены новые способы редукции к задаче об экстремуме функции конечного числа переменных. Поясним эти идеи на простом примере. Рассмотрим снова задачу отыскания минимума функционала (1) при дополнит. условии

  x (to ) = x (T) = 0      (3)

  и будем разыскивать решение задачи в форме

 

где jn (t) — некоторая система функций, удовлетворяющих условиям типа (3). Тогда функционал J (x) становится функцией коэффициентов ai :

  J = J (ai ,..., aN ),

и задача сводится к отысканию минимума этой функции N переменных. При известных условиях, наложенных на систему функций {jn } , решение этой задачи стремится при N ® ¥ к решению задачи (1) (см. Ритца и Галёркина методы ).

Другая причина усиления интереса к прямым методам — это систематическое изучение конечноразностных методов в задачах математической физики, начавшееся с 20-х гг. 20 в. Применение ЭВМ превращает постепенно прямые методы в основной инструмент решения вариационных задач.

  Метод вариаций. Второе направление исследований — это изучение необходимых и достаточных условий, которым должна удовлетворять функция x (t ), реализующая экстремум функционала J (x). Его возникновение также связано с именем Эйлера. Предположим, что тем или иным способом построена функция x (t ). Как проверить, является ли эта функция решением задачи? Первый вариант ответа на этот вопрос был дан Эйлером в 1744. В приведённой ниже формулировке этого ответа употребляется введённое в 60-х гг. 18 в. Ж. Лагранжем понятие вариации (отсюда название — В. и.), являющееся обобщением понятия дифференциала на случай функционалов.

  Пусть x (t ) функция, удовлетворяющая условию (2), a h (t) — произвольная гладкая функция, удовлетворяющая условию h (to ) = h (T) = 0. Тогда величина

  J (x + eh) = J*(e),

где e — произвольное действительное число будет функцией e . Вариацией dJ функционала J называют производную

  (dJ*/de)e = 0.

Для простейшей задачи В. и.

 

Разлагая полученное выражение в ряд по степеням e, получим

 

где о (e) — члены более высокого порядка. Так как h (to ) = h (T ) = 0, то, проведя интегрирование по частям во втором интеграле, найдём

 

  Пусть теперь x (t ) реализует экстремум. Тогда функция J*(e) имеет экстремум при e = 0. Поэтому величина dJ должна обратиться в нуль. Отсюда следует: для того чтобы функция x (t ) доставляла экстремум функционалу (1), необходимо, чтобы она удовлетворяла уравнению

 

называемому уравнением Эйлера.

  Это — дифференциальное уравнение 2-го порядка относительно функции x (t ). Необходимое условие dJ = 0 может быть применено в ряде случаев для эффективного отыскания решения вариационной задачи, поскольку функция x (t ) необходимо должна быть решением краевой задачи x (to ) = xo , x (T ) = xT для уравнения (4). Если найдено это решение и оно единственно, то найдено тем самым и решение исходной вариационной задачи. Если краевая задача допускает несколько решений, то достаточно вычислить значение функционала для каждого из решений краевой задачи и выбрать из них то, которому отвечает наименьшее значение J (x ). Однако указанный путь обладает одним существенным недостатком: не существует универсальных способов решения краевых задач для обыкновенных (нелинейных) дифференциальных уравнений.

  Уже во 2-й половине 18 в. круг задач, изучаемых В. и., значительно расширился. Прежде всего основные результаты, относящиеся к простейшей задаче В. и., были перенесены на общий случай интегральных функционалов вида

 

где x (t ) вектор-функция произвольной размерности, и на функционалы ещё более общего вида.

Перейти на страницу:

Все книги серии Большая Советская энциклопедия

Похожие книги

100 знаменитых мистических явлений
100 знаменитых мистических явлений

Человека всегда привлекала мистика, все загадочное и необъяснимое, будь то Священный Грааль, Копье Всевластия или хрустальные черепа древних инков, обладающие совершенно непостижимыми свойствами и характеристиками. Но самое удивительное заключается в том, что подобные загадочные явления имели место не только в прошлом, они окружают нас и сегодня. Именно об этом и рассказывает наша книга, прочитав которую, вы узнаете о людях и целых поездах, затерявшихся во времени и пространстве; о загадочной алтайской принцессе, с которой связывают природные катаклизмы; об НЛО, появляющихся не только в небе, но и в океане; а также о контактах людей с пришельцами из иных миров.

Валентина Марковна Скляренко , Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Яна Александровна Батий

Энциклопедии / Словари и Энциклопедии
100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии