Читаем Большая Советская Энциклопедия (ВТ) полностью

  Монокристаллы анизотропны по отношению к движению электронов (см. Анизотропия). При движении электронов вдоль каналов, образуемых плотно упакованными цепочками атомов, вероятность рассеяния электронов и ионизации атомов повышается (каналирование). Наблюдается также дифракция электронов в кристаллической решётке. В результате этого зависимости s, h и r от угла падения первичных электронов и кривые s (Eп), r (Eп) и h(Eп) для монокристаллов имеют сложную форму с рядом максимумов и минимумов (рис. 5).

  Приводимые для поликристаллов коэффициенты s, h, r, d обычно представляют собой величины, усреднённые по различным направлениям.

  В. э. э. реализуется за время, меньшее чем 10-12сек, т. е. является практически безынерционным процессом.

  Самостоятельное значение получило исследование и применение В. э. э. в сильных электростатических полях и электрических полях сверхвысоких частот. Создание в диэлектрике сильного электрического поля (105—106в|см) приводит к увеличению s до 50—100 (вторичная электронная эмиссия, усиленная полем). Кроме того, в этом случае величина s существенно зависит от пористости диэлектрического слоя, так как наличие пор увеличивает эффективную поверхность эмиттера, а поле способствует «вытягиванию» медленных вторичных электронов, которые, ударяясь о стенки пор, могут вызвать, в свою очередь, В. э. э. с s > 1 и возникновение электронных лавин. Развитие лавин при определённых условиях приводит к самоподдерживающейся холодной эмиссии, продолжающейся в течение многих часов после прекращения бомбардировки электронами.

  В. э. э. применяется во многих электровакуумных приборах для усиления электронных потоков (фотоэлектронные умножители, усилители изображений и т. д.) и для записи информации в виде потенциального рельефа на поверхности диэлектрика (электроннолучевые приборы). В ряде приборов В. э. э. является «вредным» эффектом (динатронный эффект в электронных лампах, появление электрического заряда на поверхности стекла и диэлектриков в электровакуумных приборах).

  В высокочастотном электрическом поле E = Ecoswt, вследствие В. э. э., на поверхностях электродов наблюдается явление лавинообразного размножения электронов (вторично-электронный резонанс). Это явление открыто Х. Э. Фарнсуортом в 1934. Для возникновения резонанса необходимо, чтобы время между двумя последовательными соударениями электронов с поверхностями электродов (рис. 6, а) было равно нечётному числу полупериодов высокочастотного поля Е (условия синхронизма). При этом электроны могут приобрести в поле энергию, при которой s > 1. Размножение электронов происходит на поверхностях двух электродов, между которыми приложено высокочастотное электрическое поле, или на одной поверхности, помещённой в скрещенные электрическое и магнитное поля (рис. 6, б). Быстрое нарастание концентрации электронов ограничивается ростом пространственного заряда, что нарушает условие синхронизма. Явление вторичного электронного резонанса играет существенную роль в механизме возникновения плотного прикатодного объёмного заряда в магнетронах и амплитронах, а также в механизме работы динамических фотоэлектронных умножителей. С другой стороны, это явление может быть причиной нестабильной работы этих приборов и может ограничивать их выходную мощность.

  Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Брюининг Г., Физика и применение вторичной электронной эмиссии, пер. с англ., М., 1958; Браун С., Элементарные процессы в плазме газового разряда, М., 1961; Гавичев Д. А. [и др.], Исследование резонансного высокочастотного разряда в скрещенных полях, «Журнал технической физики», 1965, т. 35, с. 813.

  А. Р. Шульман.

Рис. 5. Зависимость s, h и r от угла падения j первичных электронов для монокристаллов кремния; Еп = 1000 эв; пунктир — зависимость s (j) для плёнки кремния.

Рис. 6. Размножение электронов в высокочастотном электрическом поле (а) и в скрещенных электрическом Е и магнитном Н полях (б). Поле Н перпендикулярно плоскости чертежа; стрелками показаны траектории электронов.

Рис. 1. Распределение вторичных электронов по энергиям: I — упруго отражённые электроны, II — неупруго отражённые электроны, III — coбственно вторичные электроны; Еп — энергия первичных электронов.

Рис. 2. Вторичная электронная эмиссия на отражение (а) и на прострел (б).

Рис. 4. Зависимость коэффициентов s и h от энергии первичных электронов Еп для некоторых металлов.

Рис. 3. Зависимость коэффициента вторичной электронной эмиссии s от энергии первичных электронов Еп.

Вторичное сырьё

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже