Читаем Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим полностью

Так, например, одна из ранних ошибок, связанных с выборкой, произошла в 1936 году, когда еженедельный журнал Literary Digest провел опрос двух миллионов избирателей и ошибочно спрогнозировал блестящую победу Республиканской партии на президентских выборах США. (Как оказалось, действующий президент Франклин Рузвельт, представитель Демократической партии, победил Альфреда Лэндона с перевесом в 523 голоса к 8 в коллегии выборщиков.) И дело было не в том, что выборка оказалась слишком маленькой, — не хватало элемента случайности. Выбирая участников опроса, специалисты Literary Digest использовали список подписчиков и телефонные каталоги, не понимая, что обе группы — и подписчики, и телефонные абоненты — относятся к более состоятельной категории населения и гораздо вероятнее проголосуют за республиканцев.[27] С этой задачей можно было бы справиться гораздо лучше и дешевле, используя часть выборки, но сформированную именно случайным образом.

Не так давно нечто подобное произошло в процессе опросов, связанных с выборами. Опросы проводились с помощью стационарных телефонов. Выборка оказалась недостаточно случайной из-за погрешности, вызванной тем, что люди, которые пользуются исключительно мобильными телефонами (более молодая и либеральная категория населения), не брались в расчет. Это привело к неправильным прогнозам результатов выборов. В 2008 году в период президентских выборов между Бараком Обамой и Джоном Маккейном главные организации по проведению анкетного опроса населения — Gallup, Pew и ABC/Washington Post — обнаружили разницу в один-три пункта между опросами с учетом пользователей мобильных телефонов и без них. С учетом напряженности гонки это была огромная разница.[28]

* * *

Большинство неудобств связаны с тем, что случайную выборку трудно масштабировать, поскольку разбивка результатов на подкатегории существенно увеличивает частоту ошибок. И это понятно. Предположим, у вас есть случайная выборка из тысячи людей и их намерений проголосовать на следующих выборах. Если выборка достаточно случайна, вполне вероятно, что настроения людей в рамках выборки будут разниться в пределах 3%. Но что если плюс-минус 3% — недостаточно точный результат? Или нужно разбить группу на более мелкие подгруппы по половому признаку, географическому расположению или доходу? Или если нужно объединить эти подгруппы в целевую группу населения?

Допустим, в общей выборке из тысячи избирателей подгруппа «обеспеченных женщин из северо-восточного региона» составила гораздо меньше сотни. Используя лишь несколько десятков наблюдений, невозможно точно прогнозировать, какого кандидата предпочтут все обеспеченные женщины в северо-восточном регионе, даже если случайность близка к идеальной. А небольшие погрешности в случайности выборки сделают ошибки еще более выраженными на уровне подгруппы.

Таким образом, при более внимательном рассмотрении интересующих нас подкатегорий данных выборка быстро становится бесполезной. То, что работает на макроуровне, не подходит для микроуровня. Выборка подобна аналоговой фотопечати: хорошо смотрится на расстоянии, но при ближайшем рассмотрении теряется четкость деталей.

Далее, выборка требует тщательного планирования и реализации. Данные выборки не смогут дать ответы на новые вопросы, если они не продуманы заранее. Поэтому выборка хороша в качестве упрощенного варианта, не более. В отличие от целого набора данных, выборка обладает недостаточной расширяемостью и эластичностью, благодаря которым одни и те же данные можно повторно анализировать совершенно по-новому — не так, как планировалось изначально при сборе данных.

Рассмотрим анализ ДНК. Формируется новая отрасль индивидуального генетического секвенирования, что обусловлено грандиозным падением стоимости технологии и многообещающими медицинскими возможностями. В 2012 году цена декодирования генома упала ниже 1000 долларов США — неофициальной отраслевой отметки, при которой технология приобретает массовый характер. Так, начиная с 2007 года стартап Кремниевой долины 23andme[29] стал предлагать анализ ДНК всего за пару сотен долларов. Этот анализ позволяет выявить особенности генетического кода человека, которые повышают его предрасположенность к развитию определенных заболеваний, например рака молочной железы или проблем с сердцем. А объединяя информацию о ДНК и здоровье своих клиентов, 23andme рассчитывает выявить новые закономерности, которые невозможно обнаружить другим способом.

Перейти на страницу:

Похожие книги

Внутреннее устройство Microsoft Windows (гл. 1-4)
Внутреннее устройство Microsoft Windows (гл. 1-4)

Книга посвящена внутреннему устройству и алгоритмам работы основных компонентов операционной системы Microsoft Windows — Windows Server 2003, Windows XP и Windows 2000 — и файловой системы NTFS. Детально рассмотрены системные механизмы: диспетчеризация ловушек и прерываний, DPC, APC, LPC, RPC, синхронизация, системные рабочие потоки, глобальные флаги и др. Также описываются все этапы загрузки операционной системы и завершения ее работы. B четвертом издании книги больше внимания уделяется глубокому анализу и устранению проблем, из-за которых происходит крах операционной системы или из-за которых ее не удается загрузить. Кроме того, рассматриваются детали реализации поддержки аппаратных платформ AMD x64 и Intel IA64. Книга состоит из 14 глав, словаря терминов и предметного указателя. Книга предназначена системным администраторам, разработчикам серьезных приложений и всем, кто хочет понять, как устроена операционная система Windows.Названия всех команд, диалоговых окон и других интерфейсных элементов операционной системы приведены как на английском языке, так и на русском.Версия Fb2 редакции — 1.5. Об ошибках просьба сообщать по адресу — general2008@ukr.net.

Дэвид Соломон , Марк Руссинович

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Ведьмак. История франшизы. От фэнтези до культовой игровой саги
Ведьмак. История франшизы. От фэнтези до культовой игровой саги

С момента выхода первой части на ПК серия игр «Ведьмак» стала настоящим международным явлением. По мнению многих игроков, CD Projekt RED дерзко потеснила более авторитетные студии вроде BioWare или Obsidian Entertainment. Да, «Ведьмак» совершил невозможное: эстетика, лор, саундтрек и отсылки к восточноевропейскому фольклору нашли большой отклик в сердцах даже западных игроков, а Геральт из Ривии приобрел невероятную популярность по всему миру.Эта книга – история триумфа CD Projekt и «Ведьмака», основанная на статьях, документах и интервью, некоторые из которых существуют только на польском языке, а часть и вовсе не публиковалась ранее.В формате PDF A4 сохранен издательский макет книги.

Рафаэль Люка

Хобби и ремесла / Зарубежная компьютерная, околокомпьютерная литература / Зарубежная прикладная литература / Дом и досуг