Читаем Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим полностью

В США, как и в других странах, центры по контролю и профилактике заболеваний (CDC) обязали врачей сообщать о новых случаях гриппа. И все-таки информация о возникшей пандемии каждый раз запаздывала на одну-две недели. Люди по-прежнему обращались к врачу лишь спустя несколько дней после первых признаков недомогания. Вдобавок время уходило на то, чтобы передать эту информацию в CDC. Организация лишь констатировала количество случаев каждую неделю. При быстром распространении заболевания отстать на две недели означало безнадежно опоздать. Из-за этой задержки государственные учреждения здравоохранения вынуждены были действовать вслепую в самые ответственные моменты.

За несколько недель до того, как сведения об H1N1 попали на первые полосы газет, инженеры интернет-гиганта Google опубликовали потрясающую статью в научном журнале Nature.[1] Она произвела настоящий фурор среди медицинских чиновников и программистов, но не привлекла интереса широкой аудитории. Речь шла о том, как компания Google может «предсказать» распространение зимнего гриппа в США не только в масштабах страны, но и в отдельных регионах и даже штатах. Чтобы добиться такого результата, специалисты Google проанализировали поисковые запросы интернет-пользователей. Более трех миллиардов поисковых запросов, отправляемых в поисковую систему Google ежедневно со всего мира, составили огромный массив данных для обработки. Пригодилось и то, что Google хранит все поисковые запросы в течение многих лет.

Специалисты Google взяли 50 миллионов наиболее распространенных условий поиска, которые используют американцы, и сравнили их с данными CDC о распространении сезонного гриппа в период между 2003 и 2008 годами. Идея заключалась в том, что людей, подхвативших вирус гриппа, можно определить по тому, что они ищут в интернете. Предпринимались и другие попытки связать эти показатели с данными интернет-поиска, но никто не располагал таким объемом данных, вычислительными мощностями и статистическими ноу-хау, как Google.

В Google предположили, что в интернете существуют поисковые запросы на получение информации о гриппе (например, «средство от кашля и температуры»), но не знали, какие именно. Поэтому была разработана универсальная система, все действие которой сводилось к тому, чтобы находить корреляции между частотой определенных поисковых запросов и распространением гриппа во времени и пространстве. В общей сложности поисковая система Google обработала ошеломляющее количество различных математических моделей (450 миллионов) с целью проверки условий поиска. Для этого прогнозируемые значения сравнивались с фактическими данными CDC о случаях гриппа за 2007–2008 годы. Специалисты Google нашли золотую жилу: их программное обеспечение выявило сочетание 45 условий поиска, использование которых с математической моделью давало коэффициент корреляции между прогнозируемыми и официальными данными, равный 97%. Как и CDC, специалисты компании могли назвать территорию распространения гриппа. Но, в отличие от CDC, они делали это практически в режиме реального времени, а не спустя одну-две недели.

Таким образом, когда в 2009 году распространение вируса H1N1 достигло критических показателей, система оказалась гораздо более полезным и своевременным индикатором,[2] чем официальная статистика правительства с ее естественным отставанием из-за бюрократической волокиты. Сотрудники здравоохранения получили ценную информацию. Самое примечательное, метод компании Google позволяет обходиться без марлевых повязок и визитов к врачу. По сути, он создан на основе «больших данных» — способности общества по-новому использовать информацию для принятия взвешенных решений или производства товаров и услуг, имеющих большое значение. Благодаря этому методу к моменту приближения следующей пандемии мир будет владеть эффективным инструментом для ее прогнозирования, а значит, сможет предупредить ее распространение.

Здравоохранение — только одна из областей, в которых большие данные приносят ощутимую пользу. Они приводят к коренному преобразованию целых отраслей. Наглядный тому пример — покупка авиабилетов.[3]

В 2003 году Орен Эциони[4] собрался лететь из Сиэтла в Лос-Анджелес на свадьбу своего младшего брата. За несколько месяцев до этого знаменательного события он купил авиабилет через интернет, зная, что чем раньше возьмешь билет, тем дешевле он обойдется. Во время перелета Эциони не удержался от любопытства и спросил попутчика, сколько тот заплатил за билет. Оказалось, что значительно меньше, хотя билет был куплен намного позже. От возмущения Эциони стал опрашивать других пассажиров — и все они заплатили меньше.

Перейти на страницу:

Похожие книги

Ведьмак. История франшизы. От фэнтези до культовой игровой саги
Ведьмак. История франшизы. От фэнтези до культовой игровой саги

С момента выхода первой части на ПК серия игр «Ведьмак» стала настоящим международным явлением. По мнению многих игроков, CD Projekt RED дерзко потеснила более авторитетные студии вроде BioWare или Obsidian Entertainment. Да, «Ведьмак» совершил невозможное: эстетика, лор, саундтрек и отсылки к восточноевропейскому фольклору нашли большой отклик в сердцах даже западных игроков, а Геральт из Ривии приобрел невероятную популярность по всему миру.Эта книга – история триумфа CD Projekt и «Ведьмака», основанная на статьях, документах и интервью, некоторые из которых существуют только на польском языке, а часть и вовсе не публиковалась ранее.В формате PDF A4 сохранен издательский макет книги.

Рафаэль Люка

Хобби и ремесла / Зарубежная компьютерная, околокомпьютерная литература / Зарубежная прикладная литература / Дом и досуг
Внутреннее устройство Microsoft Windows (гл. 1-4)
Внутреннее устройство Microsoft Windows (гл. 1-4)

Книга посвящена внутреннему устройству и алгоритмам работы основных компонентов операционной системы Microsoft Windows — Windows Server 2003, Windows XP и Windows 2000 — и файловой системы NTFS. Детально рассмотрены системные механизмы: диспетчеризация ловушек и прерываний, DPC, APC, LPC, RPC, синхронизация, системные рабочие потоки, глобальные флаги и др. Также описываются все этапы загрузки операционной системы и завершения ее работы. B четвертом издании книги больше внимания уделяется глубокому анализу и устранению проблем, из-за которых происходит крах операционной системы или из-за которых ее не удается загрузить. Кроме того, рассматриваются детали реализации поддержки аппаратных платформ AMD x64 и Intel IA64. Книга состоит из 14 глав, словаря терминов и предметного указателя. Книга предназначена системным администраторам, разработчикам серьезных приложений и всем, кто хочет понять, как устроена операционная система Windows.Названия всех команд, диалоговых окон и других интерфейсных элементов операционной системы приведены как на английском языке, так и на русском.Версия Fb2 редакции — 1.5. Об ошибках просьба сообщать по адресу — general2008@ukr.net.

Дэвид Соломон , Марк Руссинович

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
С компьютером на ты. Самое необходимое
С компьютером на ты. Самое необходимое

Рассказывается о работе в операционной системе Windows (на примере версий XP и 7), текстовом редакторе Word 2010 и других приложениях, необходимых каждому пользователю: архиваторах, антивирусах и программах для просмотра видео и прослушивания музыки (Winamp, QuickTime Pro). Большое внимание уделяется работе в Интернете. Рассказывается о программах для просмотра Web-страниц, об электронной почте, а также о различных полезных приложениях для работы в сети — менеджерах закачек файлов, ICQ, Windows Live Messenger, MSN и многих других. Во втором издании рассмотрена новая ОС — Windows 7, а также последние версии приложений для пользователей.Для начинающих пользователей ПК.

Андрей Александрович Егоров , Андрей Егоров

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT