Читаем Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации полностью

К счастью, в нашем обществе в течение последних нескольких лет ускоренными темпами зреет мысль о том, что покупать надо на сайте, а забирать товар в точке выдачи или заказывать доставку до двери. Поэтому резко набрали обороты компании, которые смогли организовать эффективный быстрый и автоматизированный складской учет. Например, у одного из крупнейших интернет-магазинов «ВсеИнструменты.ру» выручка увеличилась почти на 50 % за первые 9 месяцев 2021 года[13] и дальше по инерции еще практически на 54 % за 2022[14]. Скорее всего, такой взрывной рост был вызван пандемией, которая заставила россиян пользоваться интернет-магазинами. Но развитая сеть точек отгрузки товаров и возможность доставки до двери сделали этого ретейлера одним из лидеров рынка.

Сейчас точку выдачи товаров магазина «ВсеИнструменты.ру» можно найти даже в небольшом городке с населением менее 40 тысяч человек, в котором живет автор этой книги. И горожане в массе своей уже в совершенстве освоили процесс покупки через сайт. Поэтому создание развитой системы складирования и распределения стало крайне прибыльным делом для самой компании. Лидеры рынка сегодня не жалеют денег как на автоматизацию складов, так и на их постройку. Потому что толка от них заметно больше, чем от розничных точек продаж с витринами и демонстрационными залами.

С другой стороны, вместе с развитием систем складирования и распределения товаров, появляется потребность в ведении больших баз данных учета складских остатков. И тут же вырисовывается крайне заманчивая перспектива оптимизировать на основе этих больших данных распределение товаров по складам, чтобы удовлетворить весь имеющийся спрос и в то же время не перегружать склады. А если предприятие имеет дело со скоропортящимися продуктами, то выгоду от создания моделей машинного обучения для прогнозирования спроса трудно переоценить.

По оценкам экспертов[15], только в США компании, связанные с розничной продажей продуктов питания, способны сэкономить до 47 миллиардов долларов, оптимизировав поставки товаров на склады и в точки розничной продажи. Это возможно благодаря тому, что продукты не будут портиться на полках, если магазины будут предлагать покупателям ровно столько товара, сколько те способны приобрести.

Конечно, подобная оптимизация складов при помощи больших данных становится востребована по мере увеличения запасов. Небольшая компания с парой кладовок вряд ли хоть что-то выиграет от прогноза по распределению товаров между этими точками хранения. Но при увеличении размеров помещений и при большей удаленности их друг от друга, растет стоимость их содержания, включая затраты на топливо для грузовых машин. В этот момент сэкономленные с помощью оптимизации и предсказаний «хлебные крошки» становятся очень даже заметными.

В 1987 году компания Walmart занимала 9 % рынка розничных продаж[16]. Для нее основным «производством» являлся склад товаров. Чем быстрее и эффективнее он работает, тем более оперативно и оптимально происходит поиск и выдача хранящихся там товаров, тем больше прибыль компании. Руководство Walmart понимало это очень хорошо, поэтому много лет непрерывно вкладывалось в цифровизацию складов, и к 1990 году эффективность их работы была на 40 % выше, чем у конкурентов.

Walmart создала одну из первых систем складского управления. Для этого она закупала оборудование для печати штрихкодов, сканеры, сортировщики и разного рода конвейеры. Система создавалась буквально с нуля, ведь в «бородатых» 1980-х многие фирмы пользовались услугами хорошо развитых физически людей для работы на складах, а данные о хранящихся товарах записывались на бумаге, что, естественно, затягивало процесс поиска и получения товаров.

Успехи компании вдохновили конкурентов. Они поняли, что можно существенно увеличить чистую прибыль за счет цифровизации одного лишь склада. Но было уже поздно, ведь подобную систему надо создавать не один год. Поэтому идущая на всех парах Walmart по инерции смогла нарастить свою долю на рынке с 9 % до 27 % к 1995 году, увеличив при этом производительность труда на складах еще на 48 %. Далее рост компании замедлился, и к 1999 году она смогла дополнительно захватить лишь 1 % рынка. Но производительность поднялась еще на 20 %.

Таким образом, если посчитать сложный процент увеличения производительности труда на складах компании Walmart, можно прийти к выводу, что она увеличилась почти в два с половиной раза благодаря цифровизации. И, что немаловажно, теперь на складах могут работать все желающие, а не только физически развитые люди, за счет чего уменьшились затраты на зарплату сотрудникам, а сэкономленные деньги идут на развитие компании.

Отделение распространения

Отделение распространения отвечает за работу с потенциальными клиентами, анализирует возможный доход и планирует объемы продаж. Для продвижения товара оно проводит рекламные кампании в прессе и на различных интернет-ресурсах, организует презентационные мероприятия, работает с откликами клиентов.

Перейти на страницу:

Похожие книги

Психология согласия. Революционная методика пре-убеждения
Психология согласия. Революционная методика пре-убеждения

Лучший способ добиться согласия — это воспользоваться пре-убеждением. Революционной методикой, которая позволяет получать положительные ответы еще до начала переговоров. Хотите уговорит руководителя повысить вам зарплату? Соблазнить потенциального клиента на дорогую покупку? Убедить супруга провести выходные так, как хочется вам и не хочется ему? Пре-убеждение от социального психолога №1 в мире, автора бестселлера "Психология влияния" Роберта Чалдини срабатывает во всех случаях. Она помогает избежать клиентских возражений, утомительных споров и обидных отказов. 7 простых принципов пре-убеждения позволяют выстроить разговор таким образом, что его исход почти наверняка приведет к желаемому согласию.

Роберт Бено Чалдини , Роберт Чалдини

Деловая литература / Психология / О бизнесе популярно / Образование и наука / Финансы и бизнес
Чистый кайф
Чистый кайф

— Вера? — за спиной раздается удивленный голос брата. — Рома?Рома, сидя напротив, смотрит то на своего лучшего друга, стоящего у нашего столика, то на меня с недоумением на лице.Мое сердце готово вот-вот выпрыгнуть из груди. Ладони вспотели.Ну почему? Почему все начинает рушиться именно тогда когда я хотела ему во всем признаться? Когда у меня есть что ему сказать?— Что значит "Вера"? Как это понимать? — Рома не отрывает от меня своего серьезного взгляда. В руке с силой сжимая салфетку. — То есть ты не Маша?— Ром я тебе сейчас все объясню, — выдавливаю с хрипом слова, так как горло, словно тиски сжимают, слезы наворачиваются от понимания, что это конец.Конец всему.В тексте есть: сильные чувства, бабник, упрямая героиня

Андрей Валерьевич Геласимов , Анна Мишина

Современная русская и зарубежная проза / О бизнесе популярно / Романы / Финансы и бизнес / Современные любовные романы