Первое возбужденное состояние водорода – n
= 2, на три четверти пути вверх, за ним следует n = 3, затем n = 4, n = 5 и так далее. Электрон с высоким n занимает очень высокую орбиталь и имеет очень слабую связь с протоном. На самом верху диаграммы энергия связи электрона равна нулю. Энергия в атомах измеряется в электрон-вольтах, эВ. Это энергия, требуемая электрону, чтобы преодолеть разность потенциалов в 1 вольт. Допустим, у вас есть фонарик, работающий от девятивольтной батарейки. Каждый электрон, проходя по проводам в фонарике, генерирует 9 эВ энергии в виде света и теплоты. По проводам фонарика может проходить 6,24 x 1018 электронов в секунду, при этом будет генерироваться энергия в 9 x (6,24 x 1018) эВ (или 9 ватт) световой и тепловой энергии в секунду. Следовательно, один электрон-вольт – очень малая энергия; просто такими единицами удобно оперировать, когда речь идет о небольших порциях энергии, обмен которыми происходит при электронных переходах. Например, –13,6 эВ на рисунке соответствует энергетическому уровню n = 1. Эта энергия показана как отрицательная. Чтобы вывести этот электрон из атома, ему нужно сообщить энергию 13,6 эВ. Говорят, что 13,6 эВ – это энергия связывания для основного состояния электрона n = 1. Что будет, если электрон в основном состоянии заметит фотон с энергией более 13,6 эВ? Он сможет поглотить этот фотон? Вот фотон с таким количеством энергии, что электрону с ним делать? Если электрон поглотит такой фотон, то ему хватит энергии, чтобы заскочить выше n = . Что выше n = ? Свобода. Если электрон выскочит туда на уровень энергии выше нуля, то покинет атом и расстанется со своим протоном. В таком случае мы ионизируем атом – оторвем у него электрон.
Рис. 6.2. Схема энергетических уровней водорода. Горизонтальными линиями обозначены различные энергетические уровни в атоме водорода в электрон-вольтах (эВ). Стрелками обозначены переходы электрона, при которых он может перескочить с одного энергетического уровня на другой, излучая фотон, энергия которого равна разности потенциалов между этими уровнями. Показаны переходы на первый энергетический уровень (серия Лаймана, где излучаются фотоны в ультрафиолетовой части спектра), на второй энергетический уровень (серия Бальмера, где излучаются фотоны видимого света) и на третий уровень (серия Пашена, ближний инфракрасный диапазон). На схеме показано, как электроны спускаются между энергетическими уровнями и излучают фотоны. Если электрон был на энергетическом уровне n
= 3 и опустился на энергетический уровень n = 2, то он испустит фотон H (серия Бальмера) с энергией 1,9 эВ.Предоставлено Майклом Строссом
(Теперь у атома появился заряд, и это уже не атом, а ион
.) Энергия ускользнувшего электрона выше нуля; она преобразуется в кинетическую энергию движения, при помощи которой электрон вырывается из атома. Как вы, возможно, уже догадались, атом может ионизироваться и в том случае, если в него врежется другой атом.Теперь, имея представление об энергетических уровнях, мы понимаем, как светится звезда, имеющая температуру 10 000 К. При температуре 10 000 К она настолько горяча, что у небольшой, но значительной доли атомов водорода электроны окажутся в первом возбужденном состоянии n
= 2. Вот почему я выбрал звезду именно с такой температурой – она максимально наглядно иллюстрирует ситуацию, которую я собираюсь описать. Глубоко внутри звезды складывается спектр теплового излучения, красивая кривая Планка. Она пытается проявиться во внешних слоях звезды; этот сплошной тепловой спектр в 10 000 К выдавливает атомы водорода в верхние слои, причем некоторые электроны в этих атомах находятся в первом возбужденном состоянии; это голодные электроны. Можно спросить: сколько энергии у отдельных фотонов в таком тепловом спектре? Энергии многих из этих фотонов соответствуют видимой части спектра, просто так сложилось. И в водороде, разогретом до 10 000 К, есть атомы с голодными электронами, расположеными на энергетическом уровне n = 2; эти электроны, как бешеные, глотают подходящие фотоны, а после этого поднимаются на более высокие энергетические уровни.