Что дальше? 1015
. Это квадриллион, в метрической системе имеет префикс «Что дальше? 1018, квинтиллион, приставка в метрической системе – «
Умножив это число еще на тысячу, получаем 1021
, секстиллион. Мы начинали с километров, потом дошли до мегафонов, гамбургеров из Макдоналдса, пещерных художников-кроманьонцев, муравьев, песчинок и, наконец, прибыли сюда.10 секстиллионов – это
Есть люди, которые ежедневно заявляют, что мы одиноки в этом космосе. Они просто понятия не имеют о больших числах и о космосе. Позже мы подробнее расскажем, что такое
А теперь позвольте перейти к значительно более крупным числам, гораздо больше секстиллиона – как насчет 1081
? Насколько мне известно, у этого числа нет названия. Это количество атомов в наблюдаемой части Вселенной. Зачем вообще может понадобиться число еще крупнее? Что «на Земле» можно было бы им сосчитать? Поговорим о 10100, симпатичном круглом числе. ЭтоВ наблюдаемой части Вселенной нет таких объектов, которых бы насчитывался целый гугол. Это просто забавное число. Его можно записать как 10100
либо, если ваш компьютер не ставит верхних индексов, вот так:10^100. Но в некоторых ситуациях большие числа все-таки могут пригодиться: например, если считать неНо есть и число гораздо больше гугола. Если гугол – это единица со ста нулями, то сколько будет 10 в степени гугол? У этого числа также есть название:
Я рассказываю обо всем этом не для того, чтобы убить ваше время. Просто я знаю число еще больше, чем гуголплекс. Яаков Бекенштейн изобрел формулу, позволяющую оценить максимальное количество различных квантовых состояний, которые были бы сравнимы по массе с наблюдаемой частью Вселенной. Учитывая известное явление квантовой размытости, таким же будет и максимально возможное число наблюдаемых вселенных, подобных нашей. Это число 10^(10^124), в нем 1024
гуголплексов нулей. Среди этих 10^(10^124) вселенных попадаются самые разные – есть жуткие, переполненные черными дырами, а есть и почти такие же, как наша, только в такой вселенной в некоторый момент у вашего двойника в носу может оказаться на одну молекулу кислорода меньше, чем здесь у вас, а у какого-то инопланетянина в космосе – на одну молекулу больше.Так что очень большие числа и в самом деле не лишены практической пользы. Я не представляю, для чего могут понадобиться числа еще больше вышеописанного, но математики, конечно же, представляют. В одной теореме упоминается умопомрачительное число 10^(10^(10^34)), которое называется «
Давайте побеседуем и о других вселенских крайностях.