Что произойдет, если мои часы будут совсем маленькими? Есть проблема. Внутри часов должно хватать места хотя бы на одну волну фотона с длиной λ.Если расстояние между зеркалами в моих часах равно L
, то минимально возможное расстояние L = λ.Длина и частота фотона соотносятся по формуле λ = c/ν.Чем меньше длина волны, тем выше будет ее частота. Уменьшая размер часов L, я должен сокращать и длину волны фотона, так чтобы волна умещалась в часах. При этом приходится увеличивать частоту фотона. Повышение частоты означает повышение энергии, поскольку энергия фотона определяется по формуле E = hν.Также не забываем об эйнштейновской формуле E = mc2. Энергия фотона соответствует некоторой массе. Итак, когда я уменьшаю мои часы, энергия фотона увеличивается, а вместе с ней увеличивается масса часов. В конце концов часы станут столь массивными и втиснутыми в такой малый размер L, что провалятся за собственный радиус Шварцшильда и превратятся в черную дыру! Таким образом, если я попытаюсь чрезмерно разогнать часы, то они схлопнутся в черную дыру, когда длина часов L достигнет примерно 1,6 × 10–33 см и они станут тикать с частотой раз в каждые 5,4 × 10–44 с. Этот период называется планковским временем». Это кратчайшее время, которое можно измерить. О длине L = 1,6 × 10–33 см мы уже упоминали. Я говорил, что размер сингулярности в центре шварцшильдовской черной дыры ненулевой – на самом деле сингулярность имеет примерно 1,6 × 10–33 см в поперечнике, поскольку размазывается под действием квантовых эффектов. Эта величина называется планковской длиной, это минимальный отрезок, который можно измерить. Рассказывая, что окружности дополнительных пространственных измерений, прогнозируемых теорией струн, могут иметь размеры порядка 10–33 см, мы упоминали о планковской длине.Нельзя измерить время короче планковского. Длина маленькой временной петли, которая, по нашему с Ли-Синь Ли мнению, существовала в начале Вселенной, могла быть именно столь малой (см. главу 23). На самом деле, если рассмотреть обычное пространство-время в масштабе около 10–33
см и в периоды порядка 5,4 × 10–44 с, то геометрия пространства-времени в соответствии с принципом неопределенности станет зыбкой. На таком масштабе пространство-время станет пенистым и многосвязным. Можно выразить значение планковской длины Lпланк = (Gh/2πc3)1/2 = 1,6 × 10–33 см через фундаментальные постоянные. Здесь все наши давние знакомые: ньютоновская гравитационная постоянная G, нужная для расчета радиуса черной дыры; постоянная Планка h, применяемая для расчета энергии фотона по формуле E = hν, а также c, скорость света, нужная для расчета массы, эквивалентной энергии фотона (E = mc2). Планковское время Tпланк = Lпланк/c равно периоду времени, за которое луч света проходит планковскую длину. Пренебрегая коэффициентами порядка 2 и π, это минимальный размер самых быстрых часов, пробив который они превратятся в черную дыру. Масса таких миниатюрных быстрых часов равна планковской массе, или 2,2 × 10–5 г, и они имеют планковскую плотность, которая составляет 5 × 1093 г/см3. Именно такова может быть плотность сингулярности в недрах черной дыры, пока сингулярность не начнет размазываться под действием квантовых эффектов. Именно на планковских масштабах квантовая механика начинает доминировать над общей теорией относительности и, как упоминалось выше, единой теории квантовой гравитации у нас пока нет. Поэтому планковская шкала (в единицах длины или времени) – это предел, за которым реальность в настоящее время непостижима.Планковское время 5,4 × 10–44
с – это кратчайший период, который можно измерить, и самый ранний момент в истории Вселенной, о котором можно говорить. Как я уже рассказывал, наша Вселенная могла быть всего одним пузырьком (пятном) в инфлюирующей воронке, одной из ветвей в бесконечном фрактальном дереве Вселенных, слагающих Мультивселенную, которая может быть сколь угодно древней. Но я отсчитываю время с момента формирования нашего пузырька. В табл. 24.1 перечислено, что происходило в каждую эпоху.