Читаем Большое космическое путешествие полностью

Благодарим наших студентов, в том числе Каллена Блейка (Cullen Blake), Уэса Колли (Wes Colley), Джули Комерфорд (Julie Comerford), Дэниэла Грина (Daniel Grin), Юнь-Шань Ло (Yeong-Shang Loh), Джастина Шефера (Justin Schafer), Джошуа Шрёдера (Joshua Schroeder), Зака Слепяна (Zack Slepian), Искру Стратеву (Iskra Strateva) и Майкла Фогели (Michael Vogeley). Благодарим Рамина Ашрафа (Ramin Ashraf), Сората Тунгкасири (Sorat Tungkasiri), Паулу Бретт (Paula Brett), Софию Кирхакос Стросс (супругу Майкла) и Кэти Грически (Kathy Gryzeski) за помощь в работе, а также Люси Поллард-Готт (супругу Рича), которая вычитала и отредактировала всю книгу. Благодарим Роберта Дж. Вандербея за то, что поделился некоторыми своими астрофотографиями, а также Ли-Синь Ли за помощь с иллюстрациями. Также благодарим Адама Берроуза (Adam Burrows), Криса Чибу (Chris Chyba), Матиаса Залдарриагу (Matias Zaldarriaga), Роберта Дж. Вандербея и Дона Пейджа (Don Page) за ценные замечания.

В Принстонском университете благодарим нашего выпускающего редактора Марка Беллиса (Mark Bellis), нашего корректора Сида Вестморленда (Cyd Westmoreland), а также нашего редактора Ингрид Гнерлих (Ingrid Gnerlich) за ее беспримерную веру и прозорливость.

Майкл Стросс

Нил Деграсс Тайсон

Дж. Ричард Готт

Приложение 1

Вывод формулы E = mc2

Допустим, вы находитесь в лаборатории, где частица медленно движется слева направо со скоростью v гораздо ниже с (то есть v << c). Частица подчиняется законам Ньютона, и если она имеет массу m, то, согласно Ньютону, у нее будет импульс P = mv, направленный вправо. Частица испускает в противоположных направлениях два фотона (один влево, другой вправо), каждый из которых обладает энергией E = hν0.Частица теряет энергию в количестве ΔE = 2hν0, равную той энергии, которую «с точки зрения частицы» уносят два фотона. Эйнштейн показал, что импульс фотона равен его энергии, деленной на скорость света c. С точки зрения частицы фотоны уносят равное количество импульса, но в противоположных направлениях. Поэтому общий импульс двух фотонов «с точки зрения частицы» равен нулю. Частица «считает», что находится в покое (по первому постулату Эйнштейна), и испускает два одинаковых фотона в противоположных направлениях. По соображениям симметрии, если находящаяся в покое частица испускает два равночастотных фотона в противоположных направлениях, то она и остается в покое. Мировая линия частицы остается прямой – скорость ее не меняется (см. рис. 18.4).

Фотон, летящий вправо, в итоге врежется в правую стену лаборатории. Он ударит в стену, и стена немного отскочит вправо. Так действует давление излучения: стена поглощает импульс фотона и под влиянием этого импульса начинает немного сдвигаться вправо. Наблюдатель, сидящий на правой стене, увидит, что в правую стену врезался прилетевший слева фотон и частота этого фотона выше, чем была в момент излучения (сдвинута в синюю часть спектра), поскольку частица движется в сторону правой стены. Это проявление эффекта Доплера. Для сравнения: наблюдатель, сидящий на левой стене, увидит, что летящий влево фотон смещен в красную часть спектра и частота его ниже, чем в момент излучения, поскольку частица удаляется от этого наблюдателя. Более высокочастотный (синий) фотон обладает большим импульсом, чем более низкочастотный (красный). Поэтому толчок в правую стену (с отскоком вправо) будет сильнее, чем толчок в левую стену (с отскоком влево). Два толчка не уравновешиваются, и в целом лаборатория получает импульс вправо. Давайте вычислим, каков этот суммарный толчок.

Время между прохождением гребней волны излученных фотонов (воспринимаемых как волны света), измеренное частицей, равно Δt0. Время между испусканием двух гребней волны, Δt0, равно единице, деленной на частоту света 0 с точки зрения частицы. Допустим, частота света – 100 циклов в секунду; например, время между прохождениями соседних гребней волны составляет 1/100 секунды. Тогда Δt0 = 1/v0. Пусть v – скорость частицы относительно лаборатории. Часы на частице будут тикать (в системе координат покоя в лаборатории) с частотой √1 – (v2/c2) по сравнению с часами в лаборатории, об этом мы уже говорили. Но при этих расчетах предполагается, что v << c, поэтому мы игнорируем все члены порядка (v2/c2), уделяя внимание лишь членам порядка (v/c). (Например, если v/c = 10–4, что соответствует 30 км/c, скорости вращения Земли вокруг Солнца, то v2/c2 = 10–8; этот второй член настолько мал, что им можно пренебречь по сравнению с первым.) Поскольку мы работаем в пределе v << c, частота тиканья часов на частице, в принципе, не отличается от частоты тиканья лабораторных часов. Таким образом, интервал времени между ударами часов на частице (Δt0) и в лаборатории (Δt´), в принципе, одинаковы, поскольку частица движется так медленно.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука