Читаем Большое, малое и человеческий разум полностью

Результаты такого эксперимента могут быть описаны только в рамках квантовой теории, в соответствии с которой фотон по дороге к экрану вовсе не проходит через какую-нибудь одну из двух реально существующих щелей в перегородке. Его состояние описывается таинственной комбинацией из двух соответствующих вероятностей, усредненных по некоторым комплексным числам, т. е. имеет вид


w x (вероятность А) + z x (вероятность В),


где w и z — комплексные числа. Для описанного эксперимента «вероятность А» соответствует траектории stp (источник-верхняя щель-экран), а «вероятность В» — траектории sbp (источник-нижняя щель-экран).

Вероятности событий могут взаимно «погашаться» именно потому, что множители перед вероятностями являются комплексными числами. При рассмотрении поведения фотона в рамках обычной теории вероятностей множители w и z всегда являются действительными. В квантовой механике они представляют собой комплексные числа, что сразу усложняет картину и разрушает простую вероятностную интерпретацию эксперимента. Это же обстоятельство не позволяет также описывать волновую природу частиц введением неких «волн вероятности», поскольку мы имеем дело с комплексными волнами вероятностей. Комплексные числа образуются из действительных чисел и так называемой мнимой единицы i = √(-1). Их удобно изображать на двумерной плоскости, откладывая по оси х чисто действительные, а по оси у — чисто мнимые числа. В общем случае мы имеем комбинацию типа 2 + 3√(-1) = 2 + 3i, которая изображается точкой на плоскости, как показано на рис. 2.3 (такое геометрическое представление комплексных чисел иногда называют диаграммой Аргана, а также комплексной плоскостью Весселя или Гаусса).


Рис. 2.3.

а — представление комплексных чисел на комплексной плоскости Веселя-Аргана-Гаусса; б— геометрическое представление операции сложения комплексных чисел; в — геометрическое представление операции умножения комплексных чисел.

Для комплексных чисел, представленных точками на такой диаграмме, определены разнообразные правила сложения, умножения и т. д. Например, для сложения таких чисел используется правило параллелограмма, в соответствии с которым действительные и мнимые части этих чисел просто складываются по отдельности (рис. 2.3, б), для умножения — так называемое правило подобия треугольников (рис. 2.3, в) и т. п. Для специалистов, привыкших работать с такими диаграммами, комплексные числа быстро перестают казаться чем-то абстрактным и таинственным, поэтому читатель не должен думать, что их использование в квантовой механике делает эту теорию особенно сложной или трудно воспринимаемой. В действительности комплексные числа широко используются в самых различных областях науки и техники, они являются достаточно простыми, и очень многие люди воспринимают их весьма конкретно. Так что читателя не должна беспокоить их кажущаяся (мнимая) сложность.

Однако проблемы квантовой механики не сводятся только к суперпозиции состояний с использованием комплексных чисел. До сих пор мы говорили лишь о квантовом уровне (правила которого я обозначил выше буквой U), на котором состояние системы действительно задается суперпозицией всех возможных состояний, усредненных посредством некоторых комплексных множителей. Временная эволюция такого квантового состояния называется шредингеровской или унитарной (именно поэтому я использовал в обозначениях букву U). Важнейшим свойством эволюции такого типа является линейность, т. е. для эволюции суперпозиции двух состояний можно считать, что каждое из состояний изменяется по индивидуальному закону, однако комплексные коэффициенты, по которым осуществляется усреднение, остаются постоянными. Такая линейность является характерной особенностью уравнения Шредингера, и на квантовом уровне это условие действительно выполняется для любой суперпозиции состояний.

Однако при увеличении масштаба какой-либо характерной величины происходит изменение правил. В теории увеличение масштабов соответствует переходу от квантового уровня U к классическому уровню С (этот переход обозначен на рис. 2.1 буквой R), а для физического эксперимента это означает, например, рассмотрение участка на экране. При таком переходе мелкомасштабное, квантовое событие срабатывает в качестве триггера, «запуская» значительно более крупное событие (какое только и может наблюдаться на классическом уровне!). Обычно этот переход в квантовой механике называют коллапсом волновых функций или редукцией вектора состояний.

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги