Специальную теорию относительности Эйнштейна можно свести к двум постулатам: во-первых, два наблюдателя, которые движутся друг относительно друга на постоянной и равномерной скорости, будут наблюдать идентичные законы физики, а во-вторых, скорость света постоянна и равна с для любого наблюдателя. Требование, чтобы скорость света была постоянной, обязывает полностью переформулировать традиционное видение пространства и времени. Простой способ убедиться в этом — провести мысленный эксперимент: устанавливаются два параллельных зеркала, и фотон (частица света) "путешествует" между ними обоими, как показано на рисунке 1. Для неподвижно стоящего наблюдателя, если оба зеркала разделены расстоянием d, время t, за которое фотон преодолеет расстояние между ними, равно t = d/c, то есть расстоянию, разделенному на скорость света. Однако теперь предположим, что наблюдатель перемещается относительно зеркал на некоторой скорости v в левую сторону. Тогда он будет наблюдать, что зеркала движутся вправо относительно него, как показано на рисунке 2. Расстояние, пройденное зеркалом за время t', замеренное наблюдателем в движении, равно vt'. Но теперь фотон не проходит расстояние d, он проходит по гипотенузе треугольника со сторонами vt' и d. Это расстояние будет равно:
Воспользовавшись отношением d' = ct' и возведя обе стороны в квадрат, получаем:
(ct)2
= (ct)2 + (vt')2.
Если переписать уравнение и выразить t', в итоге получается формула временного растяжения:
Итак, мы видим, что время, обозреваемое вторым наблюдателем, больше, чем время, обозреваемое первым, несмотря на то что речь идет в точности об одном и том же событии. Подобные рассуждения приводят к выводу, что длины также не остаются постоянными, а изменяются в зависимости от скорости наблюдателя. Эффекты относительности начинают значительно ощущаться при скоростях, близких к скорости света, в то время как их практически не существует в повседневной обстановке.
РИС. 1
РИС . 2
Статистическая физика Больцмана была идеально определена в свете новой теории: для множества молекул в сосуде существует конечное число сочетаний для их значений энергии и положений, заданное ограничениями, которые накладывает квантовая механика. Результат столкновений действительно произволен, так что использование вероятности полностью оправдано. На самом деле введение квантовой механики также решало другие проблемы, такие как эргодическая гипотеза: поскольку существует конечное число возможных значений энергии, становится ясно, что рано или поздно молекула пройдет через них все.
Кажется, что этот сценарий означает полную победу Больцмана над Махом, но во второй половине XX века вскрылись некие неожиданности, из-за которых чаша весов, по крайней мере слегка, наклонилась в сторону последнего.