Каждая наша клетка – целый мир! В нем всё движется. Постоянно и, на первый взгляд, хаотически с огромной скоростью движутся и сталкиваются миллионы молекул. Всё бурлит. Однако в этом видимом хаосе царит порядок. Всё идет по единому плану, закодированному в бережно хранимой в хорошо защищенном ядре клетки ДНК. Клетка напоминает огромный завод, в котором отдельные органеллы клетки – станки и цеха. Клетка – мир, полный чудес, и в этом разделе мы проникнем в этот чудесный мир.
1.2.1. Совсем немного биофизики и немного биохимии
Не пугайтесь! Мы, как всегда, постараемся рассказать об этих сложных предметах просто и понятно. По моему глубокому убеждению, разобраться в устройстве такой сложнейшей системы, как клетка, без знания фундаментальных основ взаимодействий, происходящих на молекулярном и субмолекулярном уровнях, не удастся.
Физика – это всегда количественное описание объектов и процессов: размеры, время, скорости и т. д. Это, конечно, сложнее, чем словесное описание, но накопленный человечеством опыт показывает, что только так можно познавать мир.
Мы будем по возможности следовать путем, проложенным физикой и другими естественными науками. Начнем с размеров. Для молекул и клетки обычные наши размеры слишком велики. Для них лучше подходят
Атомы имеют характерный размер – около десятой доли нанометра. (Размер самого маленького атома водорода, равный 0,1 нм, носит красивое название Ангстрем[26]
, но это помнить необязательно.) Небольшие химические молекулы имеют размер около 1 нм. А вот органические молекулы, состоящие из множества белков, уже в 10 раз большеРис. 1.2.1. Изменения свойств элементов периодической таблицы
Атомы всех имеющихся в природе химических элементов (всего их 118, элементы с номерами от 93 до 118 получены искусственно в ядерных реакторах) состоят из протонов, нейтронов и электронов. Номера элементов равны числу протонов в ядрах (заряд ядра) или электронов, окружающих ядро.
На рис. 1.2.1 наглядно показано, что в левой части таблицы находятся металлы, отдающие электроны, и другие
Атомы, связываясь с другими атомами, стремятся создать наиболее устойчивые общие электронные оболочки, то есть так объединить свои электроны, чтобы
Несколько электронов, взаимодействуя, образуют причудливые конфигурации, каждая из которых может характеризоваться определенной потенциальной энергией. Мир устроен так, что наиболее устойчивыми являются конфигурации с максимально заполненными внешними электронными оболочками[29]
. Такую конфигурацию имеют инертные газы, и заполненные внешние электронные оболочки придают им устойчивость и, следовательно, инертность, то есть нежелание вступать в какие-либо химические взаимодействия.