Мы уже говорили о той огромной роли, которую играет эпигенетика в жизни клеток и всего нашего организма. Фактически эпигенетика занимается включением и выключением различных генов
, их активацией и деактивацией. Так вот, основные механизмы эпигенетики – это, во-первых, изменение расположения гена в хромосоме, точнее его деконденсация (разупаковка) и перемещение в свободное пространство с тем, чтобы к нему могла подойти РНК-полимераза, и, во-вторых, освобождение промотора от мешающей началу работы РНК-полимеразы метильной группы (если она там была). Для особенно любознательных заметим, что существует еще несколько механизмов активации и дезактивации (экспрессии и репрессии) генов. Например, ацетилирование гистонов[45] ведет к ослаблению химических связей гистона и ДНК, стимулирует деконденсацию и активацию соответствующего гена.В хромосомах всех живых существ выделяются две структуры, играющие важную роль в их жизнедеятельности. В центре хромосом расположены центромеры
, а по ее концам – теломеры (в переводе с древнегреческого – «концевая часть»). Центромеры и теломеры представляют собой многократно повторяющиеся небольшие последовательности нуклеотидов.Центромеры в буквальном и фигуральном смысле занимают центральное место в делении клетки. Теломеры образуют своеобразные колпачки на концах хромосом, которые защищают их от повреждений. Связанные с теломерами белки прикрепляют концы хромосомы к ядерной оболочке и иногда к ядрышкам (о них мы расскажем чуть позже). Теломерные повторы всех позвоночных состоят из шести нуклеотидов TTAGGG, повторы всех насекомых – TTAGG, повторы большинства растений – TTTAGGG.
В молодости длина теломер у человека составляет около 15 тыс. пар нуклеотидов. При каждом делении клетки длина теломер сокращается
. Это объясняется тем, что ДНК-полимераза, копирующая ДНК при делении, первоначально занимает часть теломеры, к которой первоначально прикрепляется. Поэтому она не может скопировать эту часть. Клетки перестают делиться при длине теломеры 2 тыс. пар нуклеотидов, когда ДНК-полимеразе уже не на чем первоначально закрепиться. Однако человек обычно умирает раньше, с длиной теломер 5–7 тыс. пар нуклеотидов. Тем не менее связь длины теломер со временем жизни очевидна и теломерная теория старения человека остаётся одной из наиболее популярных.В ДНК есть ещё один тип фрагментов, вызывающих у геронтологов повышенный интерес. Это транспозоны
, или «прыгающие гены», – участки ДНК, способные менять свое положение в молекуле (транспозицию). У человека транспозоны составляют до 45 % всей ДНК и по типу являются ретротранспозонами. Отличительной чертой ретротранспозонов является транскрипция их кодов в РНК, как у обычных генов, а затем обратная транскрипция из РНК в ДНК в другом месте молекулы ДНК. Излишняя подвижность ретротранспозонов, их способность производить свои копии, которые могут портить ДНК, вынудила клетку использовать механизмы избавления от них. В частности, для этого используется особый тип коротких РНК – пивиРНК, помогающие специальному белку распознать опасность и дезактивировать транспозон.
Рис. 1.2.10. Хромосомные территории (вид с использованием микроскопа – сверху и схема – внизу)
«Прыгающие гены» считаются причиной около 100 различных заболеваний. Их активность усиливается с возрастом, что внушает подозрения в том, что они могут быть важными факторами старения
. Основанную на этих подозрениях теорию старения мы рассмотрим в следующей части.Итак, ДНК в хромосоме всегда находится в более или менее компактной форме. Однако плотность укладки или степень конденсации ДНК неодинакова в различные периоды жизни клетки. Перед делением клетки конденсация ДНК, то есть плотность упаковки, значительно увеличивается. Клетка собирается перед самым ответственным моментом в своей жизни. В этот момент ДНК в хромосомах становится таким плотным, что их можно увидеть в обычный световой микроскоп. В период между делениями (в интерфазе
) каждая хромосома занимает в ядре вполне определенную область (хромосомную территорию).