Каким брать этот запас, вопрос далеко не праздный. Ведь расчетом всего не предусмотришь. Еще недавно зарубежные инженеры называли этот запас «коэффициентом незнания». Я не знаю, что может случиться, и потому застраховываюсь от аварии — вот что это значило.
А о прошлом и говорить не приходится. Громоздкие, тихоходные машины прошлого века, да и начала настоящего — вот результат такой перестраховки. Незнание — ее причина.
Однако случалось, что машины выходили из строя, хотя нагрузки не превышали допустимых, а запас прочности, казалось бы, гарантировал от неожиданностей. Части машин разрушались гораздо раньше, чем рассчитывали. Жизнь машины внезапно обрывалась.
Причину стали искать — и нашли в условиях работы самих машин.
Нагрузка не остается все время постоянной. Она меняется или по величине, или по направлению. Металл детали может, например, то растягиваться, то сжиматься и притом много раз за время работы машины.
Напряжения в лопатках турбин меняются в минуту от 3 до 200 тысяч раз!
И металл «устает». Слабые места — те, прочность которых ниже, чем у остальных, начинают сдавать. А такие слабые места всегда есть, потому что металл состоит из множества мельчайших кристалликов, которые не все одинаково прочно связаны друг с другом.
Стоит такому непрочному соединению разрушиться, и усталостная трещинка растет, пока, наконец, вся деталь не ломается.
Советские исследователи, изучавшие свойства металлов, пришли к выводу, что усталостная прочность зависит от многих причин, среди которых немалое место занимает тщательная обработка поверхности. И здесь слово предоставляется технологам, которые находят способы бороться с усталостью, упрочняя поверхность деталей.
Исследования советских ученых в области прочности имеют важнейшее значение в борьбе за долговечность машин.
Без преувеличения можно сказать, что новая высокоскоростная техника во многом обязана своим рождением успехам науки о прочности металлов.
Из года в год, из десятилетия в десятилетие растут напряжения в машинах.
Еще сравнительно недавно мы имели дело с нагрузками в 1–2 тонны на квадратный сантиметр. А уже сейчас нагрузка выросла до 4 тонн, и не за горами время, когда и эта нагрузка увеличится еще в 2–4 раза.
Ведь непрерывно растут скорости в машинах. Их части двигаются иногда со скоростью винтового самолета. Пройдет еще немного времени, и они будут двигаться со скоростью реактивного самолета. И если бы инженер прошлого века попробовал построить современную машину, используя для этого обычные марки стали, железо и чугун, эта машина разлетелась бы на куски. Когда, например, работает мощная паровая турбина, на лопатки турбинного колеса действует сила в десятки тонн. Она стремится оторвать лопатки, разрушить турбинное колесо.
Однако металл турбины выдерживает эту огромную нагрузку. Он работает, кроме того, при высокой температуре — пар поступает на лопатки перегретым примерно до 500° и даже выше. Можно ожидать, что в ближайшие годы температура пара в турбинах возрастет до 700–800°, а газа в газовых турбинах — до 1000°.
Пар или газ разъедает металл, потому что действует на него химически. А когда пар остывает, мельчайшие водяные частички, несущиеся со сверхзвуковой скоростью, истирают металл, разрушая его.
Лопатки турбины могут к тому же вибрировать, колебаться с большой частотой, так как пар или газ поступает на них прерывистой струей.
Пожалуй, если бы я попробовал перечислить и объяснить все, что мы требуем от металла турбины, это заняло бы целую главу. А коротко это займет одну строчку: прочность — механическую, химическую, вибрационную, тепловую.
Таким прочным металлом располагает современный инженер.
Железо выдерживает напряжение всего 2 тонны на квадратный сантиметр. А теперь существуют сплавы железа — стали, выдерживающие 20 тонн на квадратный сантиметр. В 10 раз удалось увеличить прочность железа! Прочность легких авиационных алюминиевых сплавов в 8 раз больше, чем у чистого алюминия.
Сплавы жаропрочные переносят температуры до 1000°. Сплавы холодостойкие не теряют прочности при температурах, близких к абсолютному нулю, к минус 273°. Технике нужны сплавы для работы при давлении в сотни и тысячи атмосфер и при глубоком вакууме, когда давление близко к нулю, — и такие сплавы есть теперь.
Этот перечень можно значительно продолжить.
Словом, выбор у современного инженера неизмеримо больше, чем у его предшественников. Прочность — одно из главнейших свойств, важных для машиностроителя, — выросла у основных материалов в 5— 10 раз.
Как добилась техника таких успехов?
Учение о свойствах и поведении металлов стало путеводной звездой для металлургов, создателей новых сплавов. Новые способы исследования и испытаний дали им возможность заглянуть во «внутренний мир» металла. И все это позволяет ныне «управлять» металлом, менять его свойства сознательно, в нужную нам сторону.
Может быть, слово «управлять» и вызовет улыбку, когда речь идет не о машине, а о мертвом металле. Но какое еще слово могло бы так же точно выразить то, что творят металлурги!
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей