Какие бы быстроходные машины мы ни взяли — турбины и станки, авиадвигатели и гироскопические приборы, воздуходувки и электромоторы, — заслуга в их создании наряду с представителями других отраслей науки и техники металлургов, металловедов, ученых-прочнистов.
Успехами советской металлургии мы заслуженно гордимся. Без достижений металлургии и науки о прочности материалов была бы невозможна и современная высокоскоростная техника.
ПОБЕДА НАД МЕТАЛЛОМ
На одном из моторостроительных заводов, в цехе, где обрабатываются шейки коленчатого вала, произошел такой случай. Двое рабочих занимались шлифовкой валов. Работали оба одинаково, детали получились хорошего качества, и мастер у обоих принял работу. Когда собрали моторы, оба вала установили на свои места, а затем на испытательном стенде моторы начали испытывать.
И тут произошла странная вещь. Валы, изготовленные совершенно одинаково: в одном и том же цехе, на одинаковых станках и одинаково хорошо отшлифованные, повели себя по-разному.
Один работал нормально. Другой же «капризничал»: его заедало, смазка выдавливалась, — словом, не работа, а брак.
Моторы остановили, разобрали, валы осмотрели. Действительно, обработаны они одинаково, только один рабочий снимал стружку шлифовальным кругом, двигая его слева направо, а другой делал то же, передвигая круг справа налево. Какая, подумаешь, разница! Результат-то ведь один и тот же.
Но когда на валы попала смазка, она повела себя по-разному: на одном из валов держалась, на другом — быстро вытекала по тем еле заметным спиралькам, которые остались после обработки. Эти спиральки располагались так, что открывали маслу дорогу, а с уходом масла вступало в свои права трение — грозный враг машины. И вал отказывался работать.
Оказывается, обрабатывая металл, можно и испортить его, если не глядеть в будущее детали, не видеть ее в работе.
Заглянуть в будущее здесь означает — определить предварительно, насколько шероховатой станет деталь после «приработки», когда трение еще не вредно, а полезно. Если бы на валу, о котором мы говорили, были заранее сделаны штрихи не в одну сторону, а крест на крест, — масло не вытекало бы сразу, износ не был бы столь велик.
Обработка меняет свойства поверхности металла. Но как же узнать, какой станет поверхность в работе?
Это сделал лауреат Сталинской премии профессор П. Е. Дьяченко. Он разработал способы определения наилучшего, как говорят, оптимального качества поверхности, помогающие технологам бороться с износом.
Найдены методы получения гладкой поверхности металла.
Таких способов обработки — их называют чистовыми — есть теперь несколько.
Замечено было, что при обточке детали резцом с большой скоростью поверхность получается более гладкой. Особенно чистой получается она, если снимать тонкую стружку: тогда резец не успевает повредить поверхностный слой, заметно нагреть его. Так происходит дело при точении в тонко-расточных станках, на которых обрабатываются, например, детали реактивных двигателей. Дело это не только тонкое, но и точное: деталь вращается в станке со скоростью в несколько тысяч оборотов в минуту, без всяких колебаний, резец понемногу и плавно врезается в металл. Вся обработка ведется автоматически — только автомат и может выполнить такую сложную, точную работу.
Подобным способом, снимая тонкий слой стружки, фрезеруют детали на станках для тонкого фрезерования.
Когда нужна еще более гладкая поверхность, у технолога есть в запасе другие способы.
Он может обратиться к помощи абразивов — материалов, состоящих из твердых режущих зерен, вкрапленных в связующую массу. Простейший абразив — точильный камень или наждачная шкурка. Зерна абразива — это своеобразные резцы, которые срезают неровности на поверхности детали.
Деталь и абразивные бруски в станке двигаются в противоположные стороны относительно друг друга. Режущие зерна выравнивают поверхность. И чем сложнее их относительное движение, тем лучше срезаются все выступы, гребешки, тем более гладкой получается деталь. Абразивные бруски могут, например, вращаться и в то же время двигаться взад и вперед. При таком способе получается зеркальная поверхность, на которой еле заметны штрихи от крошечных резцов-абразивов.
А при «сверхотделке» — суперфинише — бруски и деталь могут одновременно совершать более десяти различных движений, колебаться, вращаться, двигаться в разных направлениях. Постепенно ликвидируются все последствия предыдущей обработки. После шлифовки можно зажечь спичку об отшлифованную деталь, потому что на ее поверхности еще остались неровности. После суперфиниша спичка не загорится.
Например, нужно обработать кольцо шарикоподшипника.
Не будем повторять еще раз, насколько важно получить возможно более гладкую поверхность, — особенно, если подшипник работает на больших скоростях.
После шлифовки, полировки и притирки — кропотливой, тщательной обработки — поверхность все же еще неровна. Их немного, этих микроскопических бугорков и впадин, но они есть.
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей