Передающее устройство было перестроено так, чтобы от него поступали на электроннолучевую трубку приемника импульсы фототока чередующейся полярности с амплитудами, пропорциональными яркости передаваемых элементов изображения. Для этого передаваемое изображение MN разбивалось при помощи решетки или растра R на равные элементарные участки и проецировалось через линзу L на зеркальный барабан В. Вместо одного были применены два фотоэлемента F1 и F2, включенные по дифференциальной схеме. Перед каждым из них находилось отверстие а или в, пропускавшее световые лучи, отраженные от развертывающих зеркал. Фотоэлементы работали поочередно, благодаря чему в линию поступал ток, близкий по форме к синусоидальному. (Это уменьшало искажения и потери, вызываемые влиянием емкости и самоиндукции линии, а также позволяло использовать в приемном устройстве явление резонанса для усиления сигнала.
Изменение способа получения сигнала изображения в передающем устройстве было введено для увеличения яркости изображения на экране трубки Р. В трубке прежней конструкции с модуляцией интенсивности электронного пучка при помощи диафрагмы яркость изображения зависела от количества электронов, проходивших через ее отверстие. Попадавшая на экран незначительная часть общего электронного потока не могла вызвать заметного его свечения. Кроме того, изготовление такой трубки было сложным, так как требовалась точная установка диафрагмы и регулировка положения электронного пучка относительно ее отверстия.
Сделанные Б. Л. Розингом расчеты и проведенная уже в наше время проверка их по имеющимся данным о трубке показывают, что для отклонения электронного пучка на диаметр отверстия в диафрагме, равный 1 мм, требовалось напряжение на отклоняющих пластинах около 0,1 в. Чтобы получить такое напряжение, необходим ток от фотоэлемента порядка 6 • 10-5
а. Фотоэлементы, с которыми он экспериментировал, давали только 10-7а, или 0,1 мка. Вследствие этого ему пришлось отказаться от модуляции электронного пучка диафрагмированием и перейти к модуляции скорости его движения по экрану, при которой интенсивность пучка не меняется. Для отклонения пучка по вертикали применено магнитное поле катушки Z, а по горизонтали — электрическое поле отклоняющих пластин С. На подводимое к пластинам напряжение развертки накладывалось пульсирующее напряжение сигналов от фотоэлемента, так что скорость движения пучка по строкам изменялась обратно пропорционально яркости участков передаваемого изображения. Когда в фотоэлемент попадал луч от наиболее светлого участка изображения, движение пучка по экрану замедлялось, что вызывало увеличение яркости его свечения, и наоборот. Таким образом, можно было получить все градации изображения.Этот новый, "кинематический", как его назвал Б. Л. Розинг, способ модуляции, в отличие от старого, "статического", позволял упростить конструкцию трубки, повышал чувствительность всей системы и увеличивал яркость изображения на экране трубки в несколько раз. Введение модуляции скорости движения электронного пучка по экрану трубки представляло собой новое оригинальное решение, найденное Б. Л. Розингом.
Новая схема телевизионной системы Розинга с использованием модуляции скорости движения электронного пучка в приемной трубке была запатентована им в 1911 г. в России, а затем в Англии, Германии и США.
К концу 1910 г. усовершенствованная аппаратура была готова для проведения практических опытов. Чтобы уменьшить влияние соединительных проводов, передающий и приемный аппараты были расположены в непосредственной близости один от другого.
Вспоминая о своей работе в этот период, Борис Львович писал: "Опыты развиваются все дальше, одна оптическая система сменяется другой, динамомашины у зеркал заменяются проволочными сопротивлениями, эти последние — вращающимся конденсатором, катодная трубка получает все новый вид, покрывается обмотками проволок, экран и пятно делаются все меньше, наконец применяется микроскоп для наблюдения за флуоресцирующим пятном.
Прибор со всех сторон обставляется батареями, реостатами, выключателями, измерительными приборами; опыты как бы переносятся в подземелье, в комнату, закрытую от дневного света, где по целым часам гудят быстро вращающиеся зеркала, полосы яркого электрического света мелькают кругом, а перед глазами на темном поле зрения микроскопа флуоресцирующая точка непрерывно бежит по бесконечной зигзагообразной линии как бы со скоростью почтового поезда. Необходимость регулирования нескольких реостатов и батарей, отсчеты измерительных приборов, замыкание и размыкание десяти выключателей держат нервы в напряженном состоянии. А между тем опыты дают все еще неопределенные результаты. Наконец в записной книжке появляется запись: 9 мая 1911 г. в первый раз было видно отчетливое изображение четырех параллельных светлых линий.