По мере продолжения чтения мы узнаем, что микрокластеры не образуются случайно любой группой из 10 — 1000 атомов; только определенные “магические числа” атомов будут собираться вместе и формировать микроскластеры. Следующая цитата описывает, как это впервые было открыто. И читая, следует помнить, что упоминаемый “спектр массы” означает спектроскопический анализ, который мы обсуждали в предыдущей главе. Когда обсуждаются “кластерные лучи”, это значит, что атомы (такие как Na) пропускаются через крошечное сопло, чтобы сформироваться в луч, который затем анализируется. И самое важное: когда атомы выходят из сопла, некоторые из них спонтанно собираются в микрокластеры, демонстрирующие аномальные свойства:
“Впервые микроскопические характеристики микрокластеров были открыты посредством наблюдения аномалий спектра массы (спектрального анализа) кластерного луча натрия особых размеров. Такие размеры (количество атомов) называются магическими числами. Затем было экспериментально подтверждено, что магические числа связаны со строением оболочки коллективизированных электронов. В последние 5–7 лет наука исследования микрокластеров быстро развивалась, стимулированная эпохальными открытиями в области микрокластеров металлов и вдохновленная экспериментальными техниками, создающими относительно плотные, не взаимодействующие микрокластеры разных размеров в форме микрокластерных лучей. Также, прогресс произошел за счет усовершенствования компьютеров и вычислительных техник.
Область микрокластеров привлекает внимание многих физиков и химиков (и даже биологов), занимающихся чистыми (научными) и прикладными исследованиями, поскольку она интересна не только с чисто научной точки зрения, но и с точки зрения применения в электронике, катализе, ионной технологии, химии углеводородов, фотографии и так далее. На данной стадии развития остро ощущается необходимость вводного учебника для начинающих, поясняющего фундаментальные физические концепции, важные для изучения микрокластеров. Учебник
Следующая цитата заимствована из первой части учебника Сугано и Коидзуми, где приводятся конкретные детали, касающиеся аномальных свойств микрокластеров. Хотя в терминах количества атомов микрокластеры лишь чуть-чуть меньше, чем тонкодисперсные включения, они намного более устойчивы. Здесь б
“Когда мы переходим к кусочку, называемому микрокластером с радиусом порядка 19 ангстрем, полученному посредством деления тонкодисперсных включений, мы видим, что следует использовать физику, отличную от физики тонкодисперсных включений. Существенное различие основано на теоретическом постулате, частично подкрепленном экспериментами, что микрокластеры данной формы и размера в принципе могут быть получены, а их свойства могут быть измерены, хотя такой вид измерения невозможен для тонкодисперсных включений. Этот постулат может подтверждаться рассмотрением факта, что кластеры данной правильной формы очень устойчивы по сравнению с кластерами других форм, количество которых довольно невелико. В противовес этому факту, тонкодисперсные включения разных форм и фиксированного размера, формирующие большие совокупности, чтобы позволить статистическую обработку, почти вырождаются энергетически. Поэтому извлечение тонкодисперсных включений данной формы не возможно.
Получено явственное свидетельство, что микрокластеры щелочи [1.8] и благородных [1.9] металлических элементов в форме кластерного луча обладают почти сферической формой и размером так называемых магических чисел. Магическое число означает особую размерность N (то есть, число атомов в кластере), при которой в спектральном анализе обнаруживается распространение аномалий. Это указывает на то, что микрокластеры таких размеров относительно устойчивы по сравнению с микрокластерами иных размеров”.