То же самое происходит, конечно, при наших собственных бессистемных наблюдениях окружающего нас мира. Мы никогда не наблюдаем, чтобы кресло было и тут, и там; мы никогда не наблюдаем Луну одновременно в одной части ночного неба, а также и в другой; мы никогда не видим кота, который одновременно и жив, и мертв. Понятие коллапса волновой функции присоединяется к нашему опыту путем постулирования, что акт измерения заставляет волновую функцию отказаться от квантовой неопределенности и ввести одну из множества потенциальных возможностей (частица здесь или частица там) в реальность.
Загадка квантового измерения
Но как проведение измерения экспериментатором принуждает волновую функцию к коллапсу? Фактически, когда реально происходит коллапс волновой функции, и если он происходит, что реально происходит на микроскопическом уровне? Вызывают ли коллапс любое и всякое измерения? Когда происходит коллапс и как долго это длится? Поскольку в соответствии с уравнением Шредингера волновая функция не коллапсирует, какое уравнение описывает второй этап квантовой эволюции и как новое уравнение свергает шредингеровское, узурпируя его обычную нерушимую власть над квантовыми процессами? И, что важно для нашего текущего отношения со стрелой времени, в то время, как уравнение Шредингера, уравнение, которое управляет первым этапом, не делает различий между прямым и обратным направлением во времени, вводит ли уравнение для второго этапа фундаментальную асимметрию между временем до и временем после того, как измерение произведено? То есть вводит ли квантовая механика, включая ее сопряжение с повседневным миром через измерения и наблюдения, стрелу времени в основные законы физики? Как никак, мы обсудили ранее, как квантовая трактовка прошлого отличается от трактовки прошлого в классической физике и что мы подразумевали под прошлым перед тем, как отдельные измерения и наблюдения имели место. Так, делая измерения, воплощенные во втором этапе коллапса волновой функции, устанавливаем ли мы асимметрию между прошлым и будущим, между до и после того, как измерение проведено?
Эти вопросы упорно сопротивляются полному решению и они остаются спорными. Тем не менее, после десятилетий, предсказательную мощь квантовой теории тяжело скомпроментировать. Формулировка квантовой теории в виде этапа один/этапа два, даже если этап два остается таинственным, предсказывает вероятности измерений одного результата за другим. И эти предсказания подтверждены повторением заданных экспериментов снова и снова и проверкой частоты, с которой тот или иной результат найден. Фантастический экспериментальный успех этого подхода намного перевешивает дискомфорт от отсутствия точного описания того, что на самом деле происходит на втором этапе.
Но дискомфорт всегда рядом. И он означает не просто, что некоторые детали коллапса волновой функции не вполне выяснены.