На протяжении всей мировой истории больше всего жертв уносили не войны, а эпидемии чумы и других болезней. К несчастью, вполне возможно, что некоторые государства сохранили тайные запасы возбудителей смертельных болезней, таких как оспа, которые можно превратить в оружие при помощи биотехнологий и применить с целью создания хаоса. Нельзя также исключить вероятность того, что кто-нибудь при помощи биотехнологий создаст «оружие Судного дня» из возбудителей каких-нибудь заболеваний — лихорадки Эбола, ВИЧ, птичьего гриппа, — сделав их еще более опасными или быстрее и легче распространяющимися.
Возможно, в будущем, долетев до других планет, мы обнаружим там пепел погибших цивилизаций. Мы увидим планеты с радиоактивными атмосферами; планеты, перегревшиеся из-за парникового эффекта; планеты с пустыми городами, обитатели которых обратили против себя самих высокотехнологичное биологическое оружие. Так что переход от 0 типа к I вовсе не гарантирован и представляет собой, пожалуй, самый серьезный вызов, с которым сталкивается нарождающаяся цивилизация.
Энергия для цивилизации I типа
Ключевой вопрос состоит в том, сможет ли цивилизация I типа перейти от различных видов ископаемого топлива к другим источникам энергии.
Один из возможных вариантов состоит в использовании атомной энергии. Но урановое топливо традиционных ядерных реакторов создает большое количество ядерных отходов, которые останутся радиоактивными еще миллионы лет. Даже сегодня, спустя полвека после вступления в атомную эпоху, у нас нет безопасного метода хранения высокоактивных ядерных отходов. Помимо всего прочего, эти материалы очень горячи и могут вызвать расплавление активной зоны ядерного реактора, свидетелями чего мы были во время катастроф Чернобыля и Фукусимы.
Альтернативой энергии ядерного уранового распада является энергия термоядерного синтеза. Она, как говорилось в главе 8, еще не готова для коммерческого использования. Однако цивилизация I типа, обогнавшая нас на столетие, могла бы, вероятно, отладить эту технологию и использовать термоядерный синтез как необходимый и почти неограниченный источник энергии.
Преимущество термоядерного синтеза состоит в том, что топливом для него является водород, который можно извлекать из морской воды. Кроме того, термоядерному реактору не угрожает катастрофическое расплавление активной зоны, как случилось в Чернобыле и Фукусиме. Если с термоядерным реактором что-то случится (к примеру, сверхгорячий газ соприкоснется с оболочкой реактора), процесс синтеза автоматически прекратится. Дело в том, что синтез должен проходить при условиях, удовлетворяющих критерию Лоусона: чтобы синтез водорода шел сколько-нибудь протяженное время, он должен поддерживать надлежащую плотность и температуру. Но если процесс синтеза выходит из-под контроля, он перестает удовлетворять критерию Лоусона и прекращается сам по себе.
Кроме того, термоядерный реактор производит очень умеренное количество ядерных отходов. Возникающие в процессе водородного синтеза нейтроны, облучая стальной корпус реактора, делают его слегка радиоактивным. Количество отходов при этом составляет очень небольшую долю от количества отходов, производимых урановыми реакторами.
Помимо термоядерного синтеза есть и другие возможные возобновляемые источники энергии. Одна из весьма привлекательных возможностей для цивилизации I типа состоит в том, чтобы использовать энергию излучения светила в космосе. Поскольку 60 % энергии солнечного света теряется при прохождении атмосферы, искусственные спутники могли бы собирать этой энергии гораздо больше, чем собирают солнечные батареи на поверхности Земли.
Космическая энергосистема могла бы включать в себя множество громадных зеркал, обращающихся вокруг Земли и собирающих солнечный свет. Они находились бы на геостационарной орбите (то есть обращались вокруг Земли со скоростью, равной скорости вращения Земли, и с поверхности были бы видны постоянно в одной и той же точке). Эта энергия могла бы передаваться в виде микроволнового излучения на наземную принимающую станцию и распределяться по обычной электрической сети.
У космической солнечной энергии множество преимуществ. Она экологически чиста и не производит отходов. Система сбора такой энергии может работать круглые сутки, а не только днем. (Геостационарные спутники почти никогда не попадают в тень Земли, поскольку орбиты уводят их на значительное расстояние от земной орбиты.) Солнечные панели не имеют движущихся частей, что резко снижает вероятность поломок. И что лучше всего, мы можем подключиться к безграничному потоку бесплатной энергии от Солнца.
Прорабатывая вопрос использования космической солнечной энергии, ученые приходят к выводу, что эта цель достижима при помощи уже имеющихся технологий. Основной проблемой здесь, как во всех проектах, связанных с космическими полетами, является цена. Пока использование космической солнечной энергии обошлось бы во много раз дороже, чем размещение солнечных панелей на заднем дворе.