Такая предсказательная сила полагается исключительно на обучение машин, ключевое свойство искусственного интеллекта. Чем больше данных вводится в программу или компьютер, тем большему они учатся, тем лучше алгоритмы и, предположительно, тем умнее они становятся.
Техники обучения машин и искусственного интеллекта – это то, что обеспечивало триумф суперкомпьютера IBM Watson над людьми в телевикторине Jeopardy! (Рискуй!)[47]
. Требовалось быстро отвечать на сложные вопросы, ответы на которые не найти с помощью поисковика Google30–32. IBM Watson были обучены ответам на сотни тысяч вопросов, которые задавались в предыдущих играх-викторинах Jeopardy! вооружены всей информацией из Википедии и запрограммированы на предиктивное моделирование. Здесь не предсказание будущего, а просто предсказание того, что у IBM Watson есть правильный ответ. В основе предсказательных возможностей суперкомпьютера был внушительный портфель систем для обучения машин, включая сети Байеса, цепи Маркова, метод опорных векторов и генетические алгоритмы33. Не стану больше в это углубляться: я недостаточно умен, чтобы все это понять, и, к счастью, это не особо относится к тому, куда мы с вами сейчас идем.Еще один подвид искусственного интеллекта и обучения машин2, 20, 34–48
, известный как глубинное обучение, имеет важное значение для медицины. Глубинное обучение стоит за способностью Siri декодировать речь, как и за экспериментами Google Brain[48] с распознаванием образов. Исследователи из Google X извлекли из видеозаписей на YouTube 10 млн изображений и запустили их в сеть из 1000 компьютеров, чтобы посмотреть, что Google Brain, обладающий миллионом моделируемых нейронов и миллиардом моделируемых синапсов, способен предложить самостоятельно35, 36. Ответ – кошек. Интернет, по крайней мере сегмент YouTube (который занимает весьма существенную его часть), полон видеозаписей кошек. Кроме опознания кошки это открытие проиллюстрировало когнитивные вычисления, также известные как нейроморфные49а. Если компьютеры могут соревноваться с человеческим мозгом, как гласит теория, то можно добиться перехода их функциональных возможностей в плане восприятия, действия и понимания на следующий уровень. Прогресс в нейроморфных вычислениях идет с головокружительной скоростью. В прошлом году точность компьютерного зрения – например, распознавание пешехода, шлема, велосипедиста, автомобиля – улучшилась с 23 % до 44 %, при этом частота ошибок снизилась с 12 % до менее 7 %49b.