Читаем Будущее разума полностью

А еще у роботов проблемы со здравым смыслом. Они не знают простейших фактов о физическом и биологическом мире. Не существует уравнения, которое могло бы подтвердить такие самоочевидные (для нас, людей) утверждения, как «сырая погода неприятна» или «мать всегда старше дочери». В переводе подобной информации на язык математической логики уже достигнут некоторый прогресс, но дело в том, что для изложения здравого смысла четырехлетнего ребенка потребовались бы сотни миллионов строк компьютерного кода. Как сказал однажды Вольтер, «обыкновенный здравый смысл не так уж обыкновенен».

К примеру, один из самых продвинутых роботов по имени ASIMO создан в Японии (где производится 30% всех промышленных роботов мира) корпорацией Honda. Этот чудесный робот ростом с маленького мальчика умеет ходить, бегать, подниматься по лестнице, говорить на нескольких языках и танцевать (намного лучше меня, кстати говоря). Я несколько раз общался с ASIMO на телевидении и был приятно поражен его способностями.

Однако мне довелось лично встретиться с создателями ASIMO, и я задал им ключевой вопрос: насколько умен этот робот по сравнению, скажем, с животным? Они признались мне, что речь может идти разве что об интеллекте жука. Хождение и разговоры — это в основном фокусы для прессы. Проблема в том, что ASIMO представляет собой, по существу, большой магнитофон. У него очень скромный набор по-настоящему автономных функций, почти каждый звук и каждое движение приходится тщательно программировать заранее. Так, нам потребовалось около трех часов, чтобы записать короткий ролик о том, как я общаюсь с ASIMO, потому что каждый жест и каждое движение программировала целая команда помощников.

Если мы рассмотрим все это вместе с нашим определением человеческого сознания, то получится, что нынешние роботы застряли на очень примитивном уровне — они все еще пытаются разобраться в физическом и социальном мире и овладеть базовыми фактами. Как следствие, роботы еще не дошли до стадии, на которой смогут моделировать будущее. К примеру, если вы хотите попросить робота спланировать ограбление банка, вы при этом считаете, что он знает основные факты о банках (хотя бы то, где именно в банке хранятся деньги), знает, какого рода там стоит охранная система и как полиция и зеваки будут реагировать на ситуацию. Кое-что из этого можно запрограммировать, но существуют сотни нюансов, которые человеческий мозг естественным образом понимает, а роботы пока не понимают вовсе.

Роботы прекрасно справляются с моделированием будущего в одном-единственном случае: если речь идет об одной строго определенной области, такой как игра в шахматы, моделирование погоды или столкновения галактик и т.п. Поскольку правила шахмат и законы тяготения известны уже не одно столетие, успешное моделирование шахматной партии или Солнечной системы зависит только от вычислительной мощности и времени.

Делались попытки преодолеть этот уровень при помощи грубой силы. Так, разработана программа под названием CYC, целью которой — решение задач на здравый смысл. CYC включала миллионы строк компьютерного кода с полным набором информации о здравом смысле и знаний, необходимых для понимания окружающего мира. Особенных успехов авторам программы достичь не удалось. Хотя CYC может обрабатывать сотни тысяч фактов и миллионы утверждений, она не в состоянии воспроизвести уровень интеллекта четырехлетнего ребенка. К несчастью, после нескольких оптимистических пресс-релизов работы над проектом практически остановились. Многие программисты ушли из проекта, все сроки миновали, но проект по-прежнему жив и действует.

Является ли мозг компьютером?

Где же мы ошиблись? Последние 50 лет ученые, работающие над проблемой искусственного интеллекта, пытались моделировать мозг при помощи аналогии с цифровыми компьютерами. Но, может быть, это слишком сильное упрощение. Как сказал однажды Джозеф Кэмпбелл, «компьютеры похожи на ветхозаветных богов: куча правил и никакого милосердия». Если убрать из процессора Pentium хотя бы один транзистор, компьютер немедленно встанет. А человеческий мозг способен неплохо работать, даже если от него останется половина.

Дело в том, что мозг — это не цифровой компьютер, а сложнейшая нейронная сеть. В отличие от цифрового компьютера, архитектура которого постоянна и не меняется (вход, выход и процессор), нейронная сеть представляет собой набор нейронов, которые постоянно меняют конфигурацию и усиливаются после выполнения каждой новой задачи. У мозга нет ни программы, ни операционной системы, ни Windows, ни центрального процессора. Вместо этого его нейронные сети многократно запараллелены, и при выполнении единственного дела — усвоения информации — срабатывает одновременно 100 млрд нейронов.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука