Читаем Будущее разума полностью

Информация с электродов по беспроводной связи будет поступать в компьютер и соответствующим образом обрабатываться. Позже человеку, пожелавшему испытать эти воспоминания, введут в гиппокамп аналогичные электроды и с их помощью передадут воспоминание в мозг.

(Конечно, здесь есть сложности и свои подводные камни. Если попытаться внедрить в мозг воспоминание о каком-то физическом занятии, скажем, о боевом искусстве, то возникнет проблема «мышечной памяти». Ведь когда мы, к примеру, ходим, то не обдумываем осознанно каждое движение и каждый шаг. Ходьба стала нашей второй натурой, потому что ходим мы очень часто и начинаем ходить в очень раннем возрасте. Это означает, что сигналы, управляющие движениями ног, возникают не только в гиппокампе, но и в двигательной коре, мозжечке и подкорковых узлах. В будущем, если нам захочется научиться вживлять себе память о занятиях спортом, ученым придется выяснить, как так получается, что некоторые воспоминания частично хранятся и в других областях мозга.)

Зрение и память

Формирование воспоминаний — сложный процесс, но предлагаемый подход имеет то преимущество, что дает возможность срезать часть пути, подслушав сигналы в гиппокампе, куда сенсорные импульсы попадают уже обработанными. В «Матрице», однако, электрод, как вы помните, располагался возле основания черепа, и воспоминания загружались непосредственно в мозг. При этом предполагалось, что можно расшифровать «сырые», необработанные импульсы, поступающие от глаз, ушей, кожи и т.п. и проходящие через ствол спинного мозга в таламус. Это гораздо сложнее, чем анализировать уже обработанные послания, циркулирующие в гиппокампе.

Чтобы дать вам некоторое представление об объеме необработанной информации, поступающей в таламус из спинного мозга, рассмотрим всего лишь один аспект: зрение, поскольку многие воспоминания имеют зрительный характер. Сетчатка глаза содержит примерно 130 млн фоторецепторов, известных как колбочки и палочки; в любое время они обрабатывают и записывают 100 млн бит информации об окружающем мире.

Этот громадный объем данных собирается воедино и пересылается в таламус по зрительному нерву, обладающему пропускной способностью 180 Мбит/с. Оттуда информация уходит в затылочную долю мозга, т.е. в самую заднюю его часть. Расположенная там зрительная кора, в свою очередь, начинает напряженный процесс обработки этой горы информации. Зрительная кора состоит из нескольких кусочков в задней части мозга, и каждый кусочек настроен на выполнение конкретного задания. Эти кусочки обозначают как V1 — V8.

Замечательно, что область, обозначаемая V1, работает как зеркало; она создает на заднике мозга рисунок, очень похожий по очертаниям и форме на оригинальное изображение. Этот образ поразительно похож на оригинал, за исключением того, что самый центр глаза, центральная ямка, занимает в V1 намного большую площадь, чем на сетчатке (это понятно, ведь именно в центральной ямке плотность нейронов максимальна). Поэтому образ в V1 — не точная копия видимого, а искаженная, и большую часть площади занимает его центральная часть.

Остальные (помимо V1) области затылочной доли обрабатывают различные аспекты изображения, в том числе:

стереозрение — эти нейроны сравнивают образы, поступающие с разных глаз (V2);

расстояние — эти нейроны определяют расстояние до объекта, ориентируясь на размеры теней и другую информацию от обоих глаз (V3);

цвет — обрабатывается в области V4;

движение. Разные контуры подхватывают разные типы движения, включая прямолинейное, спиральное и расширяющееся. Это происходит в области V5.

Ученые определили более 30 различных нейронных контуров, связанных со зрением, но на самом деле их, вероятно, гораздо больше.

Из затылочной доли информация пересылается в префронтальную кору, где человек наконец «видит» изображение и где формируется кратковременная память. Затем информация отправляется в гиппокамп, где обрабатывается и укладывается на хранение на срок до 24 часов. Затем воспоминание делится на кусочки и распределяется по разным участкам коры.

Речь идет о том, что зрение, которое, как нам кажется, совершенно не требует усилий, на самом деле требует последовательного срабатывания миллиардов нейронов и передачи миллионов бит информации в секунду. А теперь вспомните, что мы получаем сигналы от пяти органов чувств плюс эмоции, связанные с каждым образом. Вся эта информация обрабатывается в гиппокампе, где формируется простое воспоминание. В настоящее время ни одна машина не в состоянии воспроизвести этот сложнейший процесс, так что его копирование — серьезный вызов ученым, которые хотят создать искусственный гиппокамп человеческого мозга.

Вспоминая будущее

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука