Использование особенностей человеческого восприятия для создания завораживающего эффекта обладает огромным потенциалом, и мы привыкли ожидать этого эффекта, находясь в искусственном окружении вроде парка аттракционов или ресторана, но и здесь есть свои ограничения. Я убежден, что многозадачность — это новая движущая сила нашего времени, новый навык, отшлифованный и в совершенстве освоенный поколением «нулевых». Современная молодежь приветствует внедрение многозадачных технологий волшебных вещей. Мои студенты пишут в Twitter, параллельно играют в компьютерные игры, смотрят телевизор, работают над рефератом и переписываются с тремя друзьями одновременно. Такой параллелизм особенно ярко проявляется на лекциях в МТИ. Тридцать студентов, и у каждого по ноутбуку. Как только я открываю новую тему, они заходят на сайт «Википедии», чтобы ознакомиться с деталями. Они просматривают видеоролики, чтобы лучше разобраться в сути проекта, или начинают рыскать в поисковике, чтобы побольше узнать о биографии изобретателя, чье имя упоминается во время лекции. Новые волшебные вещи должны задействовать многозадачность и способность воспринимать информацию через разные каналы одновременно.
Технология сенсоров и волшебные поделки
Мы уже ознакомились с основными аспектами человеческого восприятия, и настало время посмотреть на проблему с другой стороны. Каковы сенсорные возможности технологий? Как датчики, встроенные в предметы обихода, и считывающие устройства могут стать частью очарования?
На что способны сенсоры
Что умеют «воспринимать» компьютеры? Если коротко — гораздо больше, чем мы с вами. Они могут распознавать звук, свет, касание, различные типы движения, считывать биометрические данные вроде сердцебиения и отпечатков пальцев, измерять скорость потока жидкостей, атмосферное давление, радиацию, температуру, расстояние и засекать местоположение1.
Сколь бы удивительными ни были возможности человеческих органов восприятия, компьютеры лучше справляются с измерением веса и пространственных параметров, так как обладают безграничным терпением и могут быть настроены на значительно большую точность замеров. Человек видит лишь в небольшом отрезке спектра и слышит только в малом диапазоне частот. Пусть порой мне кажется, что у моего отца в голове компас, все же большинство из нас, оказавшись в незнакомом месте, рискует безнадежно заблудиться без указателей и GPS.
Что из воспринимаемого человеком не может быть считано машиной? Современные системы не очень надежны в том, что касается распознавания и толкования особенностей мимики, жестов и эмоций, хотя технологии в этой области сейчас переживают бурный рост и алгоритмы улучшаются.
При этом мы все же можем встроить датчики в предметы обихода в целях сделать волшебными последние. Из датчиков самыми дешевыми являются выключатели (они встроены в GlowCap), светочувствительные диоды (они позволяют SunSprite измерять освещенность) и акселерометры. Браслет Nike FuelBand отслеживает физические упражнения при помощи встроенного акселерометра. В процессе бега датчик распознает периоды, когда ступня находится в движении, и замеряет время ее соприкосновения с землей. Рассчитывая таким образом ваш шаг, браслет может измерять пройденную дистанцию. Он показывает количество шагов, сожженных калорий и единиц под названием «fuel points» (буквально — «топливные баллы»), которые уже являются собственным изобретением Nike. Если представить соотношение «работа/цена» для датчиков в виде графика, то на другом его конце окажется Google Chauffeur (ПО для машины с автопилотом), который функционирует на основе системы лазерных оптических датчиков LIDAR стоимостью $100 000. Эти фантастические датчики пучком лазерных лучей 60 раз в секунду сканируют находящиеся поблизости здания, людей и автомобили, чтобы создать трехмерную карту пространства.
В любом измерении, в любой своей ипостаси человеческие органы восприятия уступают технологиям в точности и, разумеется, терпении. Исключение составляют только обоняние и вкус. Современные технологии позволяют видеть в темноте, используя инфракрасную часть спектра или сонары, подобно дельфинам и летучим мышам. Специализированные датчики лучше распознают звуковые волны в большем диапазоне частот (например, низкочастотные сейсмические датчики). Они также обладают чувствительностью в областях, целиком недоступных человеку, как, например, антенны, улавливающие радиосигналы, и вышки сотовой связи. Что уж говорить о почти непостижимых скоростях, с которыми работают гигабитные оптоволоконные кабели, в одно мгновение передающие куски информации размером с энциклопедию на другой конец земного шара.