Тем не менее, это открытие доказало, что на фундаментальном уровне вся реальность не тверда, а нематериальна. Твердая, логичная вселенная, которая ведет себя как теннисные шарики, отскакивающие от ракетки, на самом деле представляет собой океан невидимой, излучающейся в виде волн, энергии, В каком-то смысле, нечто явно осязаемое (реальный мир] создается практически из ничего (из бурлящего потока излучающейся энергии, которая существует в самом сердце материи).
Если снова вспомнить теорию относительности, можно увидеть одну из проблем, возникающую в связи с вышесказанным. Материальные объекты управляются конечными законами, такими как скорость света и невозможность иметь нулевые размеры. Излучающие энергетические поля не подпадают под действие этих законов. В самом деле, судя по всему, электромагнитные волны безвременны и беспространственны,
И снова, благодаря все большему пониманию квантовой теории, вырисовывается горькая истина. Несмотря на то, что мы видим твердую, временную вселенную, оказывается, что это лишь иллюзия, скрывающая «истинную реальность», И эту реальность — в самой сути всех вещей — правильнее считать нематериальной, безвременной и беспространственной.
Мы уже говорили, что наше восприятие мира — это весьма убедительная, но все-таки иллюзия, и что истинная реальность безвременна. Эта удивительная концепция подкрепляется законами квантовой физики.
Такая новость стала кошмаром для науки. Некоторые ученые даже начали высказывать мнение, что эта теория просто ошибочна (однако, как и теория относительности, она была полностью подтверждена экспериментами на субатомных частицах). Некоторые ученые впали в ошеломленное молчание, другие упрямо отказывались признать неизбежное. Даже Эйнштейн дошел до того, что попытался доказать, что его собственный труд был ошибочен (но так и не смог этого сделать).
ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ
В 1927 году в физике сложилась парадоксальная ситуация, когда профессор Джордж Томпсон получил Нобелевскую премию за доказательство волновой теории света. Ранее его отец получил такую же премию за то, что продемонстрировал верность корпускулярной теории. Ни первый, ни второй не ошибались. Корпускулярная теория применима в соответствующей сфере (материальные тела с большей массой). Волновая теория управляет на более глубоком уровне (где массы чрезвычайно малы).
То, каким образом реальность может изменяться в зависимости от того, как вы ее рассматриваете, имеет точную симметрию с релятивной физикой. И это не единственная связь. В теории относительности наиболее важной позицией является положение наблюдателя. Если вы находитесь в космическом корабле, который движется на околосветовой скорости, то, что вы увидите, будет резко отличаться от того, что сможет увидеть сторонний наблюдатель. Для него изменитесь вы, а его мир останется таким же. Хотя время будет протекать по-разному в рамках каждой системы отсчета, ощущение времени — как для вас на борту корабля, так и для того, кто видит, как вы проноситесь мимо — остается субъективно идентичным.
Возможно, что так же обстоит дело и в квантовой физике. Мы можем ощущать иллюзию времени, потому что она удобна для нашей системы отсчета, В конечном счете, все зависит от позиции наблюдателя. Тот, кто воспринимает, и определяет тип реальности, которую он ощущает. Это очень тревожная мысль, но, похоже, что она является неизбежным выводом, следующим из постулатов квантовой физики. Чтобы увидеть что-либо, необходимы световые фотоны,которые активизируют наши чувства. Однако сначала что-то должно заставить эти фотоны излучаться. По существу, это означает, что нужно постучаться в квантовую дверь лучом энергии и заставить фотоны реагировать. Если мы не постучимся, фотоны будут продолжать прятаться за дверью, Поэтому, для того, чтобы что-нибудь увидеть, или, другими словами, ощутить реальность, нам необходимо СДЕЛАТЬ что-то такое, что побудит эту реальность проявить себя.
Как ни смехотворно звучит такая идея, это установленный факт. Не столько восприятие является причиной игры, сколько вера является причиной восприятия. Одним из первых эту поразительную мысль облек в математическую форму немецкий физик Вернер Гейзенберг. В 1926 году он определил правила квантовой реальности. Позднее он же сформулировал свой «принцип неопределенности».
Этот принцип гласит, что для того, чтобы измерить импульс частицы, необходимо возмутить ее, заставив покинуть место своего положения. Для того, чтобы измерить местоположение частицы, необходимо изменить ее импульс. Невозможно точно определить одно, не изменив другое. То же самое относится и к свойствам энергии и времени. Если точно измерить одно, придется изменить другое. В результате нельзя измерить одновременно энергию и время. В реальности всегда будет существовать некоторая степень неопределенности.