В ХХ веке топология достигла блестящих успехов, однако в области теории узлов прогресс шел относительно медленно. В числе главных целей математиков, изучавших узлы, было выявить качества, которые на самом деле отличают узлы друг от друга. Такие качества называются
Прорыв в теории узлов произошел в 1928 году, когда американский математик Джеймс Уэдделл Александер (1888–1971) открыл важный инвариант, который стали называть многочленом Александера (Alexander 1928). Вообще говоря, многочлен Александера – это алгебраическое выражение, в котором для маркировки узла используется взаимное расположение пересечений. Если у двух узлов разные многочлены Александера, то узлы тоже совершенно точно разные, и это прекрасно. Плохо другое – два узла с одинаковыми многочленами Александера все равно могут оказаться разными узлами. То есть многочлен Александера – инструмент необычайно полезный, но для различения узлов все же несовершенный.
Последующие сорок лет математики провели в исследованиях системы понятий для многочлена Александера и тщательном изучении свойств узлов. Почему же они так углубились в эту область? Очевидно, не ради какой-то практической пользы. Модель атома Томсона была уже давно позабыта, а другой задачи, которая требовала бы решения на основе теории узлов, в поле зрения не наблюдалось – ни в естественных науках, ни в экономике, ни в архитектуре, ни в других дисциплинах. Математики тратили бесконечные часы на изучение узлов из чистого любопытства! Для них идея узлов и принципы, которые ими управляют, обладали изысканной красотой. Внезапное озарение, полученное благодаря многочлену Александера, было для математиков таким же непреодолимым искушением, как и задача покорить гору Эверест для Джорджа Мэллори, который, как известно, на вопрос, почему ему так хочется взобраться на эту гору, ответил: «Да потому что она есть!».
В конце 1960-х годов плодовитый англо-американский математик Джон Хортон Конвэй описал процедуру постепенного «развязывания» узлов и тем самым вскрыл глубинные отношения между узлами и их многочленами Александера (Conway 1970). В частности, Конвей предложил две простые «хирургические» операции, которые могли послужить основой для определения инварианта узла. Операции Конвея, получившие названия
Рис. 56
Благодаря трудам Конвея математики стали по-новому понимать устройство узлов, но все же еще лет двадцать были уверены, что других инвариантов узлов (наподобие многочлена Александера) уже не найдется. Однако в 1984 году положение дел резко изменилось.