Читаем Был ли Бог математиком? полностью

В ХХ веке топология достигла блестящих успехов, однако в области теории узлов прогресс шел относительно медленно. В числе главных целей математиков, изучавших узлы, было выявить качества, которые на самом деле отличают узлы друг от друга. Такие качества называются инвариантами узлов – и это величины, которые для любых двух разных проекций одного и того же узла имеют в точности одно и то же значение. Иначе говоря, идеальный инвариант – это буквально «отпечаток пальца» узла, характерное качество узла, которое не меняется ни при каких деформациях. Пожалуй, самый простой инвариант, который сразу приходит в голову, – это минимальное число пересечений при изображении узла. Например, сколько ни пытайся развязать узел-трилистник (рис. 54, b), число пересечений никогда не станет меньше трех. К сожалению, минимальное число пересечений не может служить самым удобным инвариантом по целому ряду причин. Во-первых, как показывает рис. 55, не всегда просто определить, изображен ли узел с минимальным числом пересечений. Во-вторых, и это главное, у двух разных узлов может оказаться одинаковое минимальное число пересечений. Например, на рис. 54 есть целых три разных узла с шестью пересечениями и не менее семи разных узлов с семью пересечениями. Таким образом, минимальное количество пересечений не отличает большинство узлов друг от друга. Наконец, минимальное количество пересечений именно в силу своей чрезвычайной простоты не дает представления о свойствах узлов в целом.

Прорыв в теории узлов произошел в 1928 году, когда американский математик Джеймс Уэдделл Александер (1888–1971) открыл важный инвариант, который стали называть многочленом Александера (Alexander 1928). Вообще говоря, многочлен Александера – это алгебраическое выражение, в котором для маркировки узла используется взаимное расположение пересечений. Если у двух узлов разные многочлены Александера, то узлы тоже совершенно точно разные, и это прекрасно. Плохо другое – два узла с одинаковыми многочленами Александера все равно могут оказаться разными узлами. То есть многочлен Александера – инструмент необычайно полезный, но для различения узлов все же несовершенный.

Последующие сорок лет математики провели в исследованиях системы понятий для многочлена Александера и тщательном изучении свойств узлов. Почему же они так углубились в эту область? Очевидно, не ради какой-то практической пользы. Модель атома Томсона была уже давно позабыта, а другой задачи, которая требовала бы решения на основе теории узлов, в поле зрения не наблюдалось – ни в естественных науках, ни в экономике, ни в архитектуре, ни в других дисциплинах. Математики тратили бесконечные часы на изучение узлов из чистого любопытства! Для них идея узлов и принципы, которые ими управляют, обладали изысканной красотой. Внезапное озарение, полученное благодаря многочлену Александера, было для математиков таким же непреодолимым искушением, как и задача покорить гору Эверест для Джорджа Мэллори, который, как известно, на вопрос, почему ему так хочется взобраться на эту гору, ответил: «Да потому что она есть!».

В конце 1960-х годов плодовитый англо-американский математик Джон Хортон Конвэй описал процедуру постепенного «развязывания» узлов и тем самым вскрыл глубинные отношения между узлами и их многочленами Александера (Conway 1970). В частности, Конвей предложил две простые «хирургические» операции, которые могли послужить основой для определения инварианта узла. Операции Конвея, получившие названия флип и сглаживание, схематически изображены на рис. 56. При флипе (рис. 56, а) для трансформации пересечения верхний участок струны пропускают под нижним (на рисунке также видно, как проделать эту трансформацию с настоящим узлом на веревке). Обратите внимание, что флип, очевидно, меняет самую природу узла. Например, легко убедиться, что узел-трилистник с рис. 54, b в результате флипа станет незаузленным узлом (рис. 54, а). Операция сглаживания по Конвею вовсе убирает пересечение (рис. 56, b) – для этого нужно «разрезать» струну и «склеить» не те концы.


Рис. 56


Благодаря трудам Конвея математики стали по-новому понимать устройство узлов, но все же еще лет двадцать были уверены, что других инвариантов узлов (наподобие многочлена Александера) уже не найдется. Однако в 1984 году положение дел резко изменилось.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История работорговли. Странствия невольничьих кораблей в Антлантике
История работорговли. Странствия невольничьих кораблей в Антлантике

Джордж Фрэнсис Доу, историк и собиратель древностей, автор многих книг о прошлом Америки, уверен, что в морской летописи не было более черных страниц, чем те, которые рассказывают о странствиях невольничьих кораблей. Все морские суда с трюмами, набитыми чернокожими рабами, захваченными во время племенных войн или похищенными в мирное время, направлялись от побережья Гвинейского залива в Вест-Индию, в американские колонии, ставшие Соединенными Штатами, где несчастных продавали или обменивали на самые разные товары. В книге собраны воспоминания судовых врачей, капитанов и пассажиров, а также письменные отчеты для парламентских комиссий по расследованию работорговли, дано описание ее коммерческой структуры.

Джордж Фрэнсис Доу

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Революция. От битвы на реке Бойн до Ватерлоо
Революция. От битвы на реке Бойн до Ватерлоо

История Англии – это непрерывное движение и череда постоянных изменений. Но всю историю Англии начиная с первобытности пронизывает преемственность, так что главное в ней – не изменения, а постоянство. До сих пор в Англии чувствуется неразрывная связь с прошлым, с традициями и обычаями. До сих пор эта страна сопротивляется изменениям в любом аспекте жизни. Питер Акройд показывает истоки вековой неизменности Англии, ее консерватизма и приверженности прошлому.Период между Славной революцией (1688) и победой армии союзников при Ватерлоо (1815) вобрал в себя множество событий. Поражение Якова II и правление Вильгельма III Оранского, война за испанское наследство, начавшаяся со вступления на английский престол королевы Анны, присоединение Шотландии к Англии и, следовательно, образование Великобритании в 1707 году, правление Георга I (правнука Якова I), якобитское восстание 1715 года, война четверного союза 1718–1720 годов, правление Георга II, война за австрийское наследство и семилетняя война, правление Георга III с такими важными вехами, как присоединение Ирландии и война с Наполеоном… Именно на этом отрезке времени парламент стал суверенным органом с обязанностями, намного превосходящими монаршие, были основаны Банк Англии и Лондонская фондовая биржа, а беспрецедентные технологические инновации превратили Англию из сельскохозяйственной страны в страну стали и угля. Значительные преобразования произошли и в культурной жизни – появились газеты и родился жанр английского романа. 37 иллюстраций на цветной вклейке сопровождают детальный портрет эпохи, созданный выдающимся мастером исторического повествования Питером Акройдом.В формате PDF A4 сохранён издательский дизайн.

Питер Акройд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература