Для меня и, думаю, для большинства математиков существует другая реальность, которую я буду называть «математической реальностью», и среди математиков или философов нет единого мнения относительно природы математической реальности. Одни полагают, что она существует «в умах» и что мы, в некотором смысле, конструируем ее. Другие считают, что она лежит вне нас и не зависит от нас. Человек, который мог бы дать убедительное описание математической реальности, разрешил бы очень многие из труднейших проблем метафизики. Если бы такой человек мог включить в свое описание и физическую реальность, то он разрешил бы все проблемы метафизики. Мне не следовало бы обсуждать любой из этих вопросов, даже если бы я был достаточно компетентен для этого, но я изложу свою позицию догматически, чтобы избежать малейшего недопонимания. Я убежден в том, что математическая реальность лежит вне нас, что наша функция состоит в том, чтобы открывать или обозревать ее, и что теоремы, которые мы доказываем и великоречиво описываем как наши «творения», по существу представляют собой наши заметки о наблюдениях математической реальности. Эту точку зрения в той или иной форме разделяли многие философы самого высокого ранга, начиная с Платона, и я буду пользоваться языком, естественным для человека, разделяющего эту точку зрения.
Прямо противоположную точку зрения отстаивают математики Эдвард Каснер (1878–1955) и Джеймс Ньюмен (1907–1966) в своей книге «Математика и воображение» («
То, что математика занимает высокое положение, несравнимое с положением любой другой области целенаправленного мышления, неудивительно. Она обеспечила столько достижений естественных наук, она стала столь незаменимой в делах практических и столь легко превращается в шедевр чистой абстракции, что лишь естественно признать ее главенство среди прочих интеллектуальных достижений человека.
Несмотря на это главенство, предлог для первой значительной оценки математики представился лишь недавно – с появлением неевклидовой и четырехмерной геометрии. Мы вовсе не стремимся принизить достижения математического анализа, теории вероятности, арифметики бесконечных величин, топологии и прочих дисциплин, о которых мы говорили. Каждая из них расширила пределы математики и углубила как ее смысл, так и наше понимание физической Вселенной. Однако ни одна из них не способствовала математическому самоанализу, познанию того, как соотносятся разные части математики между собой и с математикой в целом более, чем неевклидова ересь.