Поначалу Ньютон полагал, что эта книга будет всего лишь углубленной и расширенной редакцией трактата «О движении». Однако, приступив к работе, он обнаружил, что некоторые темы нуждаются в дальнейшем обдумывании. Особенно его беспокоили два вопроса. Один состоял в следующем. Ньютон первоначально сформулировал закон всемирного тяготения так, словно и Солнце, и Земля, и остальные планеты были математическими материальными точками, не имеющими измерений. Разумеется, он понимал, что на самом деле это не так, поэтому считал, что применительно к Солнечной системе его результаты лишь приблизительны. Некоторые исследователи даже полагают, что он в очередной раз отложил работу над законом всемирного тяготения после 1679 года именно потому, что такое положение дел его не устраивало[77]
. Что же касается силы, действующей на яблоко, тут все было еще хуже. Ведь очевидно, что те части Земли, которые находятся прямо под яблоком, гораздо ближе к нему, чем те части, которые находятся по ту сторону земного шара. Как же вычислить результирующую силу притяжения? Астроном Герберт Холл Тернер (1861–1930) описывал мысленные терзания Ньютона в статье, напечатанной в лондонской «В то время ему уже приходило в голову общее представление о том, что тяготение меняется обратно пропорционально расстоянию, однако он видел существенные препятствия обобщению этого закона, о которых умы меньшего масштаба и не подозревали. Главное из них ему удалось преодолеть лишь в 1685 году… Дело в том, что нужно было увязать силу притяжения Земли, действующую на тело, расположенное далеко, скажем, на расстоянии Луны, с силой притяжения, которая действует на яблоко вблизи земной поверхности. В первом случае различные частицы, составляющие Землю (чтобы сделать свой закон универсальным, Ньютон хотел распространить его на каждую из них в отдельности), находятся от Луны на примерно одинаковом расстоянии – и с точки зрения величины, и с точки зрения направления, – однако их расстояния до яблока и в том и в другом отношении сильно разнятся. Как же сложить или свести в единую результирующую силу все отдельные силы притяжения в последнем случае? И в каком таком «центре гравитации» они могут быть сосредоточены – да и существует ли он?
Окончательный прорыв произошел весной 1685 года. Ньютон сумел доказать необходимую теорему: для двух сферических тел «сила, с которой одна сфера притягивает другую, обратно пропорциональна квадрату расстояния между их центрами». То есть сферические тела с гравитационной точки зрения ведут себя так, словно это точечные массы, сосредоточенные в их центрах. Значение этой теоремы и ее красивого доказательства подчеркивал математик Джеймс Уитбред Ли Глейшер (1848–1928). В обращении к участникам празднования двухсотлетия «Начал» Ньютона (в 1887 году) Глейшер сказал такие слова (Glaisher 1888).