Мой дорогой друг, я очень рад, что вы склонны превратить себя в натуралиста, чтобы наблюдать явления мира арифметики. Доктрина у вас та же, что и у меня, я полагаю, что числа и аналитические функции – не произвольные продукты нашего сознания, я думаю, что они существуют вне нас и обладают всеми необходимыми свойствами предметов и явлений объективной реальности и мы находим или открываем их и изучаем их точно так же, как физики, химики и зоологи.
Английский математик Г. Г. Харди, сам приверженец чистой математики, был одним из самых откровенных сторонников современного платонизма. В красноречивом обращении к Британской ассоциации содействия науки 7 сентября 1922 года он объявил следующее[116]
.Математики построили очень много разных геометрических систем – и евклидовых, и неевклидовых, для одного, двух, трех и любого другого количества измерений. Все эти системы совершенно и одинаково истинны. Они воплощают результаты наблюдений математиков над их реальностью – реальностью куда более насыщенной и куда более строгой, нежели сомнительная и неуловимая реальность физики… Поэтому функция математика – просто наблюдать факты его собственной суровой и сложной системы реальности, этот неимоверно прекрасный комплекс логических соотношений, который составляет субъект его науки, как будто он – исследователь, взирающий на далекий горный хребет, и регистрировать результаты своих наблюдений на серии карт, каждая из которых – это отрасль чистой математики.
Очевидно, несмотря на то, что все свидетельства того времени указывали на произвольную природу математики, особо упорные платоники не собирались так просто сдаваться. Напротив – они считали, что возможность углубиться, по словам Харди, в «свою реальность», гораздо интереснее, чем и дальше исследовать связи с реальностью физической. Однако независимо от представлений о метафизической реальности математики одно стало очевидно. Даже необузданная на первый взгляд свобода математики предполагала одно несокрушимое и неизменное ограничение – требование логической непротиворечивости. Математики и философы сильнее прежнего понимали, что перерезать пуповину между математикой и логикой ни в коем случае нельзя. Это породило другую идею: можно ли выстроить всю математику на едином логическом фундаменте? И если да, не в этом ли тайна ее эффективности? И наоборот – можно ли применять математические методы при изучении логических рассуждений в целом? Ведь тогда математика станет не только языком природы, но и языком человеческой мысли…
Глава 7
Логики: размышления о рассуждениях