Главная особенность методаFor() состоит в том, что он позволяет, когда такая возможность имеется, распараллелить исполнение кода в цикле. А это, в свою очередь, может привести к повышению производительности. Например, процесс преобразования массива в цикле может быть разделен на части таким образом, чтобы разные части массива преобразовывались одновременно. Следует, однако, иметь в виду, что повышение производительности не гарантируется из-за отличий в количестве доступных процессоров в разных средах выполнения, а также из-за того, что распараллеливание мелких циклов может составить издержки, которые превышают сэкономленное время.
В приведенном ниже примере программы демонстрируется применение методаFor() на практике. В начале этой программы создается массивdata,состоящий из 1000000000 целых значений. Затем вызывается методFor (), которому в качестве "тела" цикла передается методMyTransf оггп (). Этот метод состоит из ряда операторов, выполняющих произвольные преобразования в массиве data. Его назначение — сымитировать конкретную операцию. Как будет подробнее пояснено несколько ниже, выполняемая операция должна быть нетривиальной, чтобы параллелизм данных принес какой-то положительный эффект. В противном случае последовательное выполнение цикла может завершиться быстрее.
using System;
using System.Threading.Tasks;
class DemoParallelFor { static int[] data;
// Метод, служащий в качестве тела параллельно выполняемого цикла.
// Операторы этого цикла просто расходуют время ЦП для целей демонстрации, static void MyTrlansform (int i) { data[i] = data[i] / 10;
if(data[i] < 10000) data[i] = 0;
if(data[i] > 10000 & data[i] < 20000) data[i] = 100; if(data[i] > 20000 & data[i] < 30000) data[i] = 200; if(data[i] > 30000) data[i] = 300;
}
static void Main() {
Console.WriteLine("Основной поток запущен.");
data = new int[100000000];
// Инициализировать данные в обычном цикле for. for (int i=0; i < data.Length; i++) data[i] = i;