virtual void print( ostream& = cout );
Type at( int ix ) const { return ia[ ix ]; }
virtual Type& operator[]( int ix ) { return ia[ix]; }
virtual void sort( int,int );
virtual int find( Type );
virtual Type min();
virtual Type max();
protected:
void swap( int, int );
void init( const Type*, int );
int _size;
Type *ia;
};
#endif
Одна из проблем, связанных с таким переходом к полиморфизму, заключается в том, что реализация оператора взятия индекса перестала быть встроенной и сводится теперь к значительно более дорогому вызову виртуальной функции. Так, в следующей функции, на какой бы тип она ни ссылалась, было бы достаточно встроенного чтения элемента:
int find( const Array int &ia, int value )
{
for ( int ix = 0; ix ia.size(); ++ix )
// а теперь вызов виртуальной функции
if ( ia[ ix ] == value )
return ix;
return -1;
}
Для повышения производительности мы включили встроенную функцию-член at(),обеспечивающую прямое чтение элемента.
18.6.1. Порождение класса, контролирующего выход за границы массива
В функции try_array() из раздела 16.13, предназначенной для тестирования нашей предыдущей реализации шаблона класса Array, есть две инструкции:
int index = iA.find( find_val );
Type value = iA[ index ];
find() возвращает индекс первого вхождения значения find_val или -1, если значение в массиве не найдено. Этот код некорректен, поскольку в нем не проверяется, что не была возвращена -1. Поскольку -1 находится за границей массива, то каждая инициализация value может привести к ошибке. Поэтому мы создадим подтип Array, который будет контролировать выход за границы массива, – Array_RC и поместим его определение в заголовочный файл Array_RC.h:
#ifndef ARRAY_RC_H
#define ARRAY_RC_H
#include "Array.h"
template class Type
class Array_RC : public virtual ArrayType {
public:
Array_RC( int sz = ArraySize )
: Array Type( sz ) {}
Array_RC( const Array_RC& r );
Array_RC( const Type *ar, int sz );
Type& operator[]( int ix );
};
#endif
Внутри определения производного класса каждая ссылка на спецификатор типа шаблона базового должна быть квалифицирована списком формальных параметров:
Array_RC( int sz = ArraySize )
: ArrayType( sz ) {}
Такая запись неправильна:
// ошибка: Array - это не спецификатор типа
Array_RC( int sz = ArraySize ) : Array( sz ) {}
Единственное отличие поведения класса Array_RC от базового состоит в том, что оператор взятия индекса контролирует выход за границы массива. Во всех остальных отношениях можно воспользоваться уже имеющейся реализацией шаблона класса Array. Напомним, однако, что конструкторы не наследуются, поэтому в Array_RC определен собственный набор из трех конструкторов. Мы сделали класс Array_RC виртуальным наследником класса Array, поскольку предвидели необходимость множественного наследования.
Вот полная реализация функций-членов Array_RC, находящаяся в файле Array_RC.C (определения функций класса Array помещены в заголовочный файл Array.C, поскольку мы пользуемся моделью конкретизации шаблонов с включением, описанной в разделе 16.18):
#include "Array_RC.h"
#include "Array.C"
#include assert.h
template class Type
Array_RC Type ::Array_RC( const Array_RCType &r )
: Array Type( r ) {}
template class Type
Array_RC Type ::Array_RC( const Type *ar, int sz )
: Array Type( ar, sz ) {}
template class Type
Type &Array_RC &Type&::operator[]( int ix ) {
assert( ix = 0 && ix & Array &Type&::_size );
return ia[ ix ];
}
Мы квалифицировали обращения к членам базового класса Array, например к _size, чтобы предотвратить просмотр Array до момента конкретизации шаблона:
Array Type::_size;