В течение миллионов лет, когда проходила эволюция жизни на планете, у нас (и почти у всех животных) развивалось зрение, способное воспринимать те длины волн, которые были наиболее доступны (по крайней мере, в дневное время). Альтернативой является ночное зрение животных, которые охотятся на теплокровных млекопитающих. Тепло, излучаемое телом, — это и есть инфракрасная радиация. Вот типичные представители: змеи, кошки и совы. Некоторые змеи, к примеру, кроме глаз для общего зрения, обладают инфракрасно-чувствительными органами, при помощи которых змея может определить температурные изменения менее 0.5 °C (1° F). Кошки, в том числе и дикие — леопард, пума и другие члены семейства кошачьих, известны своим прекрасным ночным зрением, а это означает, что их реакция в ближнем инфракрасном диапазоне намного лучше, чем реакция человеческого глаза.
Мы остановимся на глазе человека, а для этого важно понимать его «конструкцию».
Эти вопросы и сами по себе интересны, но, кроме этого, мы найдем еще и массу концептуальных аналогий между устройством глаза и ТВ-камеры.
На рис. 2.2 мы видим глазную линзу (хрусталик), которая и фокусирует изображение на сетчатке.
Сетчатка — это на самом деле «фоточувствительная область», состоящая из миллионов клеток — колбочек и палочек. Эти клетки можно рассматривать как часть нашей нервной системы. Колбочки чувствительны к средней и яркой интенсивности света и воспринимают цвета. Палочки чувствительны к низким уровням света и не способны различать цвета. Ночью мы видим благодаря палочкам, поэтому в темноте мы не можем различать цвета.
Число колбочек в каждом глазе приблизительно составляет 10 млн., а палочек — около 100 млн. Колбочки сконцентрированы вокруг области прохождения оптической оси. Эта область окрашена желтым пигментом и называется желтым пятном. Желтое пятно является основной областью, которую обрабатывает наш мозг, и, хотя она очень мала, концентрация колбочек в ней составляет около 50 000. Среднее фокусное расстояние глаза (то есть расстояние между хрусталиком и сетчаткой при разглядывании бесконечно удаленного объекта) составляет около 17 мм. Такое фокусное расстояние дает резкое изображение в пространственном угле, равном примерно 30°. Это также и размер области, где больше всего колбочек. Именно поэтому угол в 30° считается стандартным углом зрения.
Концентрация колбочек возрастает по направлению к центру оптической оси, достигая максимума лишь на 10°. Каждая из клеток-кол бочек соединяется с мозгом отдельным зрительным нервом, по которому электрические импульсы посылаются в мозг. Конечно, глаз видит и под гораздо большим углом, так как сетчатка охватывает пространственный угол почти в 90°, и колбочки есть и вне желтого пятна, но к одному нерву в этом случае подсоединена группа колбочек. В этой области мы видим не так четко, как в области, где к каждой колбочке подсоединен отдельный нерв, поэтому эта часть сетчатки называется областью периферического зрения.
Рис. 2.2.
Рис. 2.3.
«Секция обработки изображения» в головном мозге сконцентрирована на 30°, хотя видим мы лучше примерно на 10°. Обработка поддерживается постоянными движениями глаза во всех направлениях, что аналогично панорамной головке в видеонаблюдении.
В SLR-камерах (однообъективных зеркальных фотоаппаратах) стандартный угол зрения в 30° достигается при помощи 50-мм объектива, для 2/3" камеры — это 16-мм объектив, для 1/2" камеры — 12-мм и для 1/3" камеры — 8-мм объектив. Другими словами, изображения, полученные при помощи любого типа камер с соответствующими стандартными объективами, будут иметь довольно близкие размеры и перспективу, похожую на то, что мы видим своими глазами.
Объективы с меньшим фокусным расстоянием дают более широкий угол зрения и называются широкоугольными объективами. Объектив с большим фокусным расстоянием сужает угол зрения, и поэтому кажется, что он приближает удаленные объекты, отсюда и название: телеобъектив («теле» означает далекий). Еще один интересный вопрос, касающийся видеонаблюдения, связан с тем, что, зная фокусное расстояние глаза и максимальный диаметр раскрытия радужной оболочки, равный примерно 6 мм, мы можем найти эквивалентное F — число глаза (которое мы обсудим позже в этой книге):
Fглаза
= 17/6 = 2.8С полностью раскрытой радужной оболочкой мы можем довольно хорошо видеть в полнолуние (освещенность объектов равна примерно 0.1 люкса). Помните это число, когда будете сравнивать минимальные характеристики освещенности для разных камер.