Читаем Частица на краю Вселенной полностью

На первый взгляд такой подход кажется не очень перспективным. Сказать, что есть симметрия – значит сказать, что какие-то различия не имеют значения. Мы называем кварки «красными», «зелеными» и «синими», но какой у кого цвет – не имеет значения. Электроны и электронные нейтрино, конечно, отличаются друг от друга, но только потому, что симметрия слабых взаимодействий нарушается полем Хиггса, скрывающимся в пустом пространстве. Если бы поля Хиггса там не было, электроны (только те, которые левши) и электронные нейтрино были бы вообще неразличимы.

Но когда мы смотрим на фермионы и бозоны Стандартной модели, они кажутся нам совершенно разными: массы различны, заряды различны, отличаются они и отношением к слабым и сильным взаимодействиям: одни в них участвуют, а другие – нет, даже общее число частиц совершенно разное. Никакой очевидной симметрии между этими частицами не заметно.

Однако физики упорно продолжают искать симметрии, и в конечном итоге они пришли к идее, что каждая частица Стандартной модели имеет совершенно неизвестного «суперпартнера», с которым устанавливает отношения суперсимметрии. Считается, что все эти суперпартнеры должны быть очень тяжелыми, потому мы еще и не обнаружили ни одного из них. Чтобы отметить эту блестящую идею, физики придумали остроумное правило поименования этих суперчастиц: если у вас есть фермион, название его суперпартнера-бозона образуется добавлением буквы «с» в начале названия соответствующего фермиона, а если у вас есть бозон, для названия его суперпартнера-фермиона к его названию добавляется окончание «ино».

Поэтому в теории суперсимметрии у нас есть набор новых бозонов с названиями «сэлектрон», «скварки» и так далее, а также набор новых фермионов под названием «фотино», «глюино» и «хиггсино». (Как любит поговаривать Дейв Барри[14]: «Клянусь, я не шучу!») Основные характеристики суперпартнеров – те же, что и у оригинальных частиц, за исключением того, что их масса намного больше, а бозоны и фермионы стали взаимозаменяемыми. Таким образом, «стоп» – это бозонный партнер топ-кварка (истинный кварк иногда называют топ-кварком), он чувствует как сильные, так и слабые взаимодействия и имеет заряд +2/3. Интересно, что в некоторых моделях суперсимметрии стоп – зачастую самый легкий бозонный суперпартнер, хотя сам топ-кварк является самым тяжелым фермионом. Бозонные суперпартнеры-фермионы, как правило, смешиваются, так что суперпартнеры W-бозонов и заряженных бозонов Хиггса соединяются, чтобы образовать «чарджино» (заряженный), в то же время партнеры Z-бозона, фотона и нейтральных бозонов Хиггса смешиваются, чтобы образовать «нейтралино».

Суперсимметрия на сегодня является чисто спекулятивной идеей. Она очень хорошо объясняет некоторые свойства, но пока нет никаких прямых доказательств ее истинности. Тем не менее она достаточно интересна и потому стала самой популярной теорией физики элементарных частиц за пределами Стандартной модели. К сожалению, в то время как основная идея очень проста и элегантна, ясно, что в реальном мире суперсимметрия должна нарушиться, в противном случае и частицы, и их суперпартнеры имели бы равные массы. А после того, как мы нарушим суперсимметрию, она перестает быть простой и элегантной и становится жутко запутанной.


Частицы Стандартной модели и их суперпартнеры (выше). Бозоны изображены кружками, фермионы – квадратиками. Три копии каждого кварка и скварка и восемь копий глюонов и глюино представляют разные цвета. В суперсимметричной Стандартной модели имеется пять бозонов Хиггса вместо одного обычного. Суперпартнеры W-бозонов и заряженные бозоны Хиггса смешиваются и превращаются в чарджино, а суперпартнеры Z-бозона, фотон и нейтральный бозон Хиггса смешиваются и образуют нейтралино.


Существует некая версия теории суперсимметрии, так называемая «минимальная суперсимметричная стандартная модель», которая, возможно, является самым простым способом встроить суперсимметрию в реальную картину мира: она содержит всего 120 новых параметров, которые должны быть заданы вручную. Это означает, что существует огромная свобода в построении конкретных суперсимметричных моделей. Часто, чтобы сделать задачу решаемой, физики полагают многие параметры равными нулю или, по крайней мере, равными между собой. На практике вся эта свобода означает, что очень трудно понять, что именно утверждает теория суперсимметрии. Для любых заданных экспериментальных условий обычно можно найти набор параметров, при которых теория еще применима.

Перейти на страницу:

Все книги серии Universum

Растут ли волосы у покойника?
Растут ли волосы у покойника?

В науке часто возникают мифы, которые порой отличаются поразительной живучестью. Они передаются из поколения в поколение, появляясь на страницах книг, на интернетовских сайтах, звучат в научных докладах и в разговорах обычных людей.Именно таким мифам и посвятил свою книгу известный немецкий популяризатор науки Э. П. Фишер. Он рассказывает, почему весь мир полагает, что пенициллин открыл Александр Флеминг, а родители троечников утешают себя тем, что великий Эйнштейн в школе тоже не был отличником. Фишер говорит и о мифах, возникших в последние годы, например, о запрограммированности нашей жизни в генах или о том, что мы должны в день выпивать два литра воды. Вероятно, многие с Фишером где-то и не согласятся, но его книга наверняка заставит читателя улыбнуться, а потом задуматься о довольно серьезных вещах.2-е издание.

Эрнст Петер Фишер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Коннектом. Как мозг делает нас тем, что мы есть
Коннектом. Как мозг делает нас тем, что мы есть

Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.

Себастьян Сеунг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги