Длина коллайдера ISR составляла примерно 1,2 километра. Это была большая машина, но в будущем предстояло построить еще большие. В 1976 году был открыт Протонный суперсинхротрон (SPS) длиной около 6,9 километров, его энергия достигала 300 ГэВ. Всего лишь несколько лет спустя, приняв смелое решение, ЦЕРН модернизировал SPS. Если первоначально там ускорялись протоны, в новой конфигурации должны были сталкиваться протоны с
SPS по-прежнему на ходу и напряженно работает. Благодаря модернизации теперь он ускоряет протоны до 450 ГэВ. Пучки из него поступают в БАК, который разгоняет их до еще более высоких энергий. Физики элементарных частиц очень любят «апгрейдить» старые машины.
В 1989 году ЦЕРН открыл свой следующий большой проект: запустил Большой электрон-позитронный коллайдер (LEP). Для этого на швейцарско-французской границе на глубине 100 метров проложили новый тоннель, на этот раз с длиной окружности 27 километров. Эти цифры должны вам что-то напомнить, и действительно, туннель, построенный для LEPа, – тот же самый туннель, в котором сейчас помещается БАК. После успешной десятилетней работы в 2000 году LEP был отключен, а вся техника демонтирована – нужно было освободить место для БАКа.
Большой электрон-позитронный коллайдер
Протоны – адроны, то есть сильно взаимодействующие частицы. Когда вы сталкиваете два протона друг с другом (или протон и антипротон), предсказать результат не очень просто. На самом деле там происходит следующее: один из кварков или глюонов первого адрона налетает на кварк или глюон второго адрона, но проблема в том, что вы не знаете точного значения начальной энергии ни одной из частиц, поэтому непонятно, с чего начать анализ. У машины, в которой сталкиваются электроны и позитроны, совсем другое назначение: она построена в первую очередь для точных измерений, а не в качестве инструмента грубой силы. Когда электрон и позитрон сталкиваются, как это происходит в LEPе, вы точно знаете, что происходит, а такие инструменты лучше подходят для тонких измерений свойств известных частиц, чем для открытия новых. Если воспользоваться аналогией с игрой «Где же Уолдо?»[2]
, то в экспериментах на адронном коллайдере ваш взгляд как бы беспорядочно блуждает по всей картине в поисках забавной полосатой шапочки, а эксперименты на электрон-позитронном коллайдере похожи на нанесение мелкой сетки на рисунок и кропотливого изучения всех лиц, одного за другим.LEP был настолько точным прибором, что с его помощью оказалось даже возможным обнаружить влияние Луны, или, по крайней мере, приливов, которые она вызывает. Каждый день гравитационное поле Луны притягивает Землю, а в ЦЕРНе эти крошечные деформации Земли каждый день вызывают растяжение и сжатие общей длины туннеля LEPа примерно на миллиметр. В масштабах двадцатисемикилометровой пучковой трубы не так уж много – но этого достаточно, чтобы вызвать крошечные колебания энергии электронов и позитронов. И такой высокоточный инструмент, как LEP, их быстро уловил. После первых недоумений по поводу странных суточных колебаний энергии частиц физики ЦЕРНа быстро разобрались в том, что происходит. (Кстати, такой способ обнаружения Луны ничем не отличается от того метода, которым астрофизики доказывают существование темной материи во Вселенной, а именно – по наличию ее гравитационного воздействия.) А еще LEP зарегистрировал всплески токов утечки, возникавшие в момент отправления высокоскоростных поездов TGV от вокзала Женевы и заметно менявшие режим работы тонко настроенной машины.
Но LEP был сконструирован не для того, чтобы физики с его помощью определяли воздействие Луны на Землю или время отправления поездов. Они хотели найти бозон Хиггса. И в какой-то момент им показалось, что они нашли его.