Читаем Частица на краю Вселенной полностью

На самом деле все происходит не так. Даже обладая идеальным зрением, вы не увидели бы постоянно тускнеющего света. Вначале, при удалении от свечи, ее свет действительно постепенно бы слабел, но в какой-то момент ситуация изменилась бы. Вместо того чтобы слабеть, свет свечи начал бы мерцать – включаться и выключаться, и это при том, что во включенном состоянии его яркость оставалась бы постоянной. По мере того как ваш друг уходил бы от вас все дальше, темные периоды удлинялись бы, а светлые – укорачивались, и в конце концов свеча почти всегда казалась бы темной, и только очень редко можно было бы увидеть слабые вспышки. Эти вспышки – отдельные частицы света – фотоны. Такой мысленный эксперимент описан в книге физика Дэвида Дойча «Структура реальности» (David Deutsch, The Fabric of Reality), где среди прочего отмечается, что у лягушек зрение лучше, чем у людей. Им повезло – они различают отдельные фотоны.

Идея фотонов впервые появилась в работах Макса Планка и Альберта Эйнштейна, выполненных ими на рубеже XIX–XX веков. Планк исследовал излучение, испускаемое объектами при нагревании. Проблема состояла в том, что экспериментальные результаты и теоретические, полученные в рамках волновой теории света, не совпадали. Согласно теории, интенсивность излучения с очень короткой длиной волны и, следовательно, с очень высокой энергией должна была быть намного больше, чем наблюдаемая в опыте. Планк предложил блестящее и несколько неожиданное решение: свет приходит в виде дискретных пакетов, или «квантов», а квант света с некоторой фиксированной длиной волны должен иметь фиксированную энергию. Требуется изрядное количество энергии, чтобы сформировать даже один квант коротковолнового света, поэтому теория Планка помогла объяснить, почему интенсивность коротковолнового излучения намного меньше, чем это следует из волновой теории.

Связь между энергией и длиной волны – ключевое понятие в квантовой механике и теории поля. Длина волны – это расстояние между двумя соседними гребнями волны. Когда она мала, гребни прижимаются ближе друг к другу. Чтобы добиться этого, нужно затратить энергию, так что понятно, почему световые пакеты с короткими длинами волн, как, например, у ультрафиолетового света или у рентгеновских лучей, обладают более высокой энергией. Если длина волны велика, как у радиоволн, отдельные кванты света имеют очень низкую энергию. После того как появилась квантовая механика, эта взаимосвязь между длиной волны и энергией была распространена и на массивные частицы. Большая масса подразумевает короткую длину волны, что означает, что частица занимает меньше места. Вот почему электроны, а не протоны или нейтроны, определяют размер атома: они самые легкие из всех частиц атома, поэтому имеют самую большую длину волны, и, следовательно, занимают больше всего места. В некотором смысле это даже объясняет, почему БАК должен быть таким большим. На ускорителе пытаются рассмотреть то, что происходит на очень малых расстояниях, а это значит, что нужно использовать очень маленькие длины волн, следовательно, нам нужны высокоэнергетичные частицы, то есть нам нужен гигантский ускоритель, чтобы заставить их летать как можно быстрее.

Планк не сумел сделать концептуальный скачок и перейти от метода квантования энергии к идее частиц света в буквальном смысле. Он считал введение квантов просто своего рода трюком, который помогает получить правильный ответ, а не фактом реальности. Этот скачок сделал Эйнштейн, который в то время ломал голову над загадочным явлением под названием «фотоэлектрический эффект». Когда вы освещаете металл ярким светом, вы можете выбить из его атомов электроны. Казалось бы, число таких освободившихся электронов зависит от интенсивности света, поскольку если луч света ярче, в металл вкачивается больше энергии. Но выяснилось, что это не совсем так: свет большой длины волны, даже очень яркий, не сумеет даже расшатать электроны, в то время как довольно слабый, зато коротковолновый свет способен вырвать некоторые электроны из атомов. Эйнштейн понял, что фотоэлектрический эффект можно объяснить, если считать, что свет распространяется не в виде непрерывной волны, а в виде отдельных квантов. И это справедливо не только для излучения светящегося нагретого тела. «Высокая интенсивность, но длинноволновое излучение» подразумевает море квантов, каждый из которых обладает слишком малой энергией, чтобы оторвать какие-либо электроны от атомов, а «низкая интенсивность, но короткие волны» означает всего несколько квантов, но в каждом достаточно энергии, чтобы освободить электрон.

Ни Планк, ни Эйнштейн не использовали слово «фотон». Оно было придумано Гилбертом Льюисом в 1920-х годах, а благодаря Артуру Комптону стало популярным. Именно Комптон окончательно убедил людей в том, что свет – это поток частиц, показав, что кванты света обладают и моментом, и энергией.

Перейти на страницу:

Все книги серии Universum

Растут ли волосы у покойника?
Растут ли волосы у покойника?

В науке часто возникают мифы, которые порой отличаются поразительной живучестью. Они передаются из поколения в поколение, появляясь на страницах книг, на интернетовских сайтах, звучат в научных докладах и в разговорах обычных людей.Именно таким мифам и посвятил свою книгу известный немецкий популяризатор науки Э. П. Фишер. Он рассказывает, почему весь мир полагает, что пенициллин открыл Александр Флеминг, а родители троечников утешают себя тем, что великий Эйнштейн в школе тоже не был отличником. Фишер говорит и о мифах, возникших в последние годы, например, о запрограммированности нашей жизни в генах или о том, что мы должны в день выпивать два литра воды. Вероятно, многие с Фишером где-то и не согласятся, но его книга наверняка заставит читателя улыбнуться, а потом задуматься о довольно серьезных вещах.2-е издание.

Эрнст Петер Фишер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Коннектом. Как мозг делает нас тем, что мы есть
Коннектом. Как мозг делает нас тем, что мы есть

Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.

Себастьян Сеунг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги