Читаем Чего не знает современная наука полностью

В первом примере важно то, что чем выше человек, тем больше возможность включения его в «нечеткое множество высоких людей». Так же и во втором: чем больше зерен, тем больше возможность назвать их кучей. И хотя эта возможность какого-либо утверждения или события в нечеткой математике задается некоторым числом (нулем – если что-то невозможно, единицей – если вполне возможно, числом между нулем и единицей – если возможно до некоторой степени), конкретное ее числовое значение совершенно не важно, а используется исключительно для того, чтобы сравнить его со значением возможности другого события и выяснить, какое из них более возможно. Таким образом, с точки зрения нечеткой математики весь мир можно представить в виде событий, выстроенных в цепочку, в начале которой идут самые возможные события, а в конце – совершенно невозможные.

На первый взгляд такая математика кажется чрезвычайно бедной. Ну, действительно, как можно описать реальность, если нельзя использовать знания о количественных характеристиках явления, а только о порядке, определяемом его возможностью? Но тем не менее оказалось, что в рамках моделей теории возможности можно решать множество важнейших проблем, например, проблему оптимального выбора, ту самую, частные задачи которой мы постоянно и порой неосознанно решаем в своей жизни.

Действительно, ведь, для того чтобы выбрать стратегию поведения, влекущую наименьшие потери, нам в первую очередь важно знать, что все другие стратегии хуже, и только потом мы интересуемся, насколько хуже. А для ответа на первый вопрос и нужно лишь построить цепочку стратегий, упорядоченных по возможности потерь.

Ну а какое отношение теория возможностей имеет к обсуждаемой нами проблеме точности научного описания реального мира? Оказалось, что и для таких «бедных» теоретико-возможностных моделей можно построить и методы проверки гипотез, и методы оптимального оценивания. Причем, несмотря на то что построение теоретико-возможностных моделей требует значительно меньше исходных сведений, чем это нужно для теоретико-вероятностных, результат подчас не хуже, а во многих ситуациях и лучше.

Нечеткость как фундаментальное свойство мира

Но все же остается вопрос: можно ли вообще обойтись без нечеткости, можно ли в принципе определить «бесконечно точно» числовые значения тех параметров, которыми мы пытаемся описать мир в его математических моделях? Можно ли надеяться на то, что когда-нибудь, пусть через бесконечное число поколений, мы обретем знание обо всех механизмах действия природы и научимся бесконечно точно измерять и вычислять? Ответ в какой-то степени дает физика микромира, объявляющая, что фундаментальным свойством микрообъектов является неопределенность значений их параметров. Чтобы описать этот факт математически, в квантовой физике используют стохастические модели, в которых «амплитуды вероятностей» проявляются в частоте повторяющихся исходов или в экспериментах, в которых участвуют большие ансамбли объектов. Тем самым свойства объектов связываются с процессом их наблюдения. А если нет возможности наблюдать последовательности явлений? Тогда можно предположить, что сами объекты микромира «нечетки» и характеризуются лишь возможным набором значений с указанием порядка от более возможных к менее возможным. В таком нечетком мире нет полной предопределенности, его будущее размыто и может быть реализовано во множестве вариантов.

* * *

Уже привычным стало представление о том, что математика нужна лишь для вычислений. А число, учат нас в средней школе, – это то, что служит для выражения количества. Как-то даже обидно: во времена античности числам приписывали великую тайную силу, способность управлять миром, в них видели зашифрованными высокие принципы эволюции, а в современном мире их роль сведена до положения «слуг точных наук». Но вот в последнее столетие в математике появился ряд разделов, в которых конкретные значения результатов расчета не важны, а математическая модель нужна для того, чтобы определить, по какому из возможных путей пойдет развитие в описываемой ситуации. Такова, например, качественная теория динамических систем, выводы которой имеют скорее философскую, нежели количественную ценность («выживет» или нет та или иная система, сохранит ли устойчивость или разрушится и т. п.). К этим же разделам относится и обсуждаемая здесь теория возможностей – в ней числа используются уже не только для описания количества, но и для задания порядка. Может быть, так возвращается в наш мир одна из утраченных граней философского понимания математики?

Алексей Чуличков, д-р физ. – мат. наук, МГУ

<p>Закон и порядок</p>

Всем нам хочется порядка и определенности. Но желание порядка наталкивается на уверенность в том, что порядка все равно не будет и никакие законы тут не помогут. Да и могут ли люди, имеющие совершенно разные интересы и устремления, установить некий общий порядок, договориться и написать законы, устраивающие всех?

Перейти на страницу:

Похожие книги

1941: фатальная ошибка Генштаба
1941: фатальная ошибка Генштаба

Всё ли мы знаем о трагических событиях июня 1941 года? В книге Геннадия Спаськова представлен нетривиальный взгляд на начало Великой Отечественной войны и даны ответы на вопросы:– если Сталин не верил в нападение Гитлера, почему приграничные дивизии Красной армии заняли боевые позиции 18 июня 1941?– кто и зачем 21 июня отвел их от границы на участках главных ударов вермахта?– какую ошибку Генштаба следует считать фатальной, приведшей к поражениям Красной армии в первые месяцы войны?– что случилось со Сталиным вечером 20 июня?– почему рутинный процесс приведения РККА в боеготовность мог ввергнуть СССР в гибельную войну на два фронта?– почему Черчилля затащили в антигитлеровскую коалицию против его воли и кто был истинным врагом Британской империи – Гитлер или Рузвельт?– почему победа над Германией в союзе с СССР и США несла Великобритании гибель как империи и зачем Черчилль готовил бомбардировку СССР 22 июня 1941 года?

Геннадий Николаевич Спаськов

Публицистика / Альтернативные науки и научные теории / Документальное