Читаем Человеческое познание его сферы и границы полностью

Попробуем выяснить, что в этом процессе является условным и что оказывается физическим фактом. Физическим фактом является то, что если вы возьмете два стальных стержня одинаковой комнатной температуры и по видимости одинаковой длины и нагреете один из них на огне, а другой положите в снег, то, когда вы после сравните их, окажется, что тот, который был на огне, будет выглядеть несколько длиннее, чем тот, который был в снегу, но когда они оба снова будут иметь температуру вашей комнаты, эта разница исчезнет. Я здесь исхожу из допущения донаучных методов определения температуры: горячим или холодным телом считаю то, что горячо или холодно на осязание. В результате таких грубых донаучных наблюдений мы решаем, что термометр дает точное измерение того, что приблизительно измеряется нашими осязательными ощущениями тепла и холода; мы можем теперь в качестве физиков игнорировать эти осязательные ощущения и обращаться только к термометру. Было бы тавтологией говорить, что ртуть в моем термометре поднимается вместе с повышением температуры, существенным же фактом является то, что все другие термометры ведут себя подобным же образом. Этот факт устанавливает сходство между поведением моего термометра и поведением других тел.

Но элемент условности не вполне таков, каким я его установил. Я не исхожу из предположения, что мой термометр правилен по определению; наоборот, всеми признается, что каждый действующий термометр более или менее неточен. Идеальный термометр, к которому действующие термометры только приближаются, есть такой, который, будучи принят за точный, делает общий закон расширения тел при повышении их температуры настолько точным, насколько это возможно. Эмпирическим фактом является то, что благодаря соблюдению определенных правил при изготовлении термометров мы можем делать их все более и более приближающимися к идеальному термометру, и именно этот факт оправдывает концепцию температуры как величины, имеющей для данного тела в данное время некоторое точное значение, которое может слегка отклоняться от значения, даваемого всяким действующим термометром.

Этот процесс одинаков во всех физических измерениях. Грубые измерения ведут к приблизительному закону; изменения в измерительных приборах (подчиняющиеся правилу, что все инструменты для измерения одной и той же величины должны давать насколько возможно точно один и тот же результат) способны делать закон все более точным. Наилучшим инструментом считается такой, который дает наивысшую возможную степень точности закона, причем считается, что идеальный инструмент мог бы сделать закон абсолютно точным.

Данное положение хотя и может показаться сложным, все-таки еще недостаточно сложно. Этот процесс иногда бывает связан только с одним законом, и очень часто случается, что и самый закон приблизителен. Измерения различных величин взаимозависимы, как мы это только что видели в примере с длиной и температурой, так что изменение в способе измерения одной величины может изменить меру другой величины. Законы, условия и наблюдения отдельных фактов бывают почти неразрешимым образом связаны и смешаны в реальном процессе развития науки. Результат наблюдения обычно устанавливается в форме, которая предполагает определенные законы и определенные условные допущения; если результат противоречит системе принятых до этого законов и условных допущений, то исследователю может быть предоставлена значительная свобода в выборе того, какой из этих законов или условных допущений должен быть изменен. Избитым примером этого является эксперимент Майкельсона-Морли, в котором оказалось, что самое простое его истолкование влечет за собой радикальное изменение временных и пространственных измерений.

Но вернемся к измерению расстояния. Здесь имеется большое число грубых донаучных наблюдений, которые наводят на мысль о действительно применяемых методах измерения. Если вы идете или едете на велосипеде по гладкой дороге, применяя равномерное и одинаковое усилие для движения, то вам потребуется приблизительно одинаковое время для каждой следующей одна за другой мили дороги. Если дорога асфальтируется, то количество материала, необходимое для одной мили, будет приблизительно таким же, которое потребуется и для другой мили. Если вы едете по дороге на автомобиле, то время, затрачиваемое на каждую милю, будет приблизительно таким, какое вы предвидите на основании показаний вашего спидометра. Если вы основываете тригонометрические вычисления, исходя из предположения, что все последующие мили одинаковы, то результаты будут в очень близком соответствии с результатами, полученными с помощью непосредственного измерения. И так далее. Все это показывает, что числа, получаемые обычными процессами измерения, имеют большое значение для физики и дают основание для многих физических или физиологических законов. Но эти законы, будучи сформулированы, дают основание для улучшения процессов измерения и для признания результатов улучшенных процессов более «точными», хотя на самом деле они являются только более удобными.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже