Теперь мы можем легко заметить, что в рукотворных биореакторах действуют те же факторы, что и в природном биореакторе Бадилака. Бедренная мышца капрала Исаака Эрнандеса выросла вновь не только благодаря тому, что Бадилак вставил биологические подпорки в уцелевшую после ранения ткань, и не только из-за того, что эти «строительные леса,» потом распались, высвобождая сигнальные агенты и тем самым сзывая стволовые клетки на это место. Мышца отросла еще и оттого, что Эрнандес, кряхтя и потея, каждый день упорно занимался физиотерапией. Всякий раз, когда раненый солдат позволял своей тяжести опуститься на эти стволовые клетки, он подавал им сигнал — такой же сигнал, какой Вуньяк-Новакович создавала искусственным путем, плавно опуская на подопытную ткань поршень своего биореактора, чтобы убедить эти клетки стать костью или хрящом.
* * *
Одна из самых желанных целей в регенеративной медицине — обретение способности создавать целые органы во всей их сложности, а не только отдельные их фрагменты.
Никласон — в числе исследователей, которые стремятся раздвигать возможности отрасли по этой части. Во время своего визита я прошел вслед за одним из ее постдоков в шкаф-холодильник, установленный в ее йельской лаборатории. Мой сопровождающий снял с полки стеклянную емкость. Внутри был не какой-то аморфный кусок сердечной мышцы, который показывала мне Вуньяк-Новакович: на сей раз не было никаких сомнений, что именно плавает в этом контейнере. Это была отлично сохранившаяся пара крысиных легких, взятая у реального животного и затем «обесклеточенная» («децеллюларизированная»).
Подобно тем, кто создает более простые ткани, при производстве легких Никласон опирается на физические силы и на «химический суп», воспроизводя естественное окружение органа и убеждая стволовые клетки превращаться в процессе созревания именно в тот тип ткани, который нужен исследовательнице. Но в ходе своих экспериментов она быстро поняла, что наука пока еще не в состоянии предложить ей технологию, которая позволила бы сконструировать искусственный каркас, с достаточной степенью детальности воспроизводящий форму и архитектуру реального легкого — структуры, напоминающей по своей сложности и запутанности лабиринт с Минотавром. После того как мы вдыхаем воздух, он проходит по трахее, одиночному пути, который быстро ветвится на множество более мелких отростков, порождающих собственные веточки. Собственно говоря, в дыхательных путях наших легких имеются 23 «поколения» таких ветвлений и сотни миллионов воздушных мешочков [легочных альвеол] диаметром 200 микрон. Каждый такой мешочек наполнен капиллярами, которые поглощают кислород и насыщают им кровь.
«Если попытаться сделать полимер, где будут все эти штуки… — Никласон морщится, показывая, как непосильна столь колоссальная задача. — Сейчас просто нет такой технологии. Не существует — и точка. Мы этого не можем».
Никласон старается устроить так, чтобы за нее это сделала сама природа. После извлечения легких из тела мертвого донора она вымачивает их в смеси детергентов и концентрированных растворах солей, чтобы провести вымывание всех клеточных компонентов легких, с наибольшей вероятностью способных вызвать иммунную реакцию, когда их поместят в новое тело. Остается грубый каркас — нечто вроде волокнистого материала, который используется Бадилаком при регенерации мышц. Биохимические компоненты этой структуры в общем-то одни и те же у разных особей и видов. Но для Никласон, в отличие от Бадилака, на этих ранних стадиях эксперимента важна сложная архитектура каркаса, его точная форма. После очистки каркаса она опрыскивает его стволовыми клетками и помещает в биореактор, условия в котором должны воспроизводить те, в которых обычное легкое существует внутри тела.
«Через наши легкие проходит кровь, — объясняет она. — Поэтому мы придумали схему, где наши легочные ткани тоже подвергаются такому воздействию жидкости. К тому же мы позволяем им дышать, поскольку дыхание играет важную роль для развития легких. И с нашим "супом" мы тоже долго возимся. В итоге у нас имеются все три компонента — каркас, биореактор, питательная смесь».
Никласон пока не готова к тому, чтобы испытать эти легкие на пациентах-людях. Она отмечает, что пока никто не помещал такие искусственные легкие даже в тело подопытной крысы дольше, чем на день-другой. Исследовательница подчеркивает, что биоинженерные требования, ориентированные на человека, должны быть безупречны, поскольку мы предполагаем, что реципиент (получатель таких легких) будет потом жить еще много лет. Она вспоминает предостерегающую историю о том, как генетическая терапия убила Джесси Гелсингера и почти стоила карьеры Джиму Уилсону, когда-то работавшему вместе с Суини.