Это и было зафиксировано в законе всемирного тяготения. Очень серьезным аргументом в пользу именно такого воздействия расстояния на силу тяготения была аналогия с освещенностью. Исаак Ньютон много занимался исследованием света и знал, что освещенность поверхности лучами от какого-либо источника света обратно пропорциональна квадрату расстояния от этого источника.
Формой развития естествознания, поскольку оно мыслит, является гипотеза.
Сам Ньютон считал величайшим достоинством своих теорий строгую опору на опыт (на самом деле далеко не всегда она была такой строгой, как казалось ученому). Вот его задиристое заявление: «Все, что не выводится из наблюдений, следует называть гипотезой; гипотезам же, либо метафизическим, либо физическим, либо скрытых свойств, либо механическим, нет места в экспериментальной философии».
Приглядимся поближе к этой фразе. Во-первых, сразу ясно, что сегодня мы понимаем термин «гипотеза» иначе, чем Ньютон, поэтому его знаменитое «гипотез не строю» (или «не измышляю» — в зависимости от перевода) не должно служить заветом или упреком для современных физиков. Сам Ньютон, безусловно, тем и занимался, что строил гипотезы и проверял их. Во-вторых, что гораздо важнее, здесь Ньютон кидает камешки, а вернее — целые глыбы, в огороды своих предшественников. Это Кеплер объяснял орбиты в Солнечной системе скрытыми свойствами Солнца и планет; это Галилей любил выдвигать «механические гипотезы»… В науке последователь разрушает часть наследства, полученного от тех, по чьему пути он идет, — это неизбежно.
Главное, значит, для Ньютона наблюдения. Что же, верно. Но чего бы стоили наблюдения сами по себе, если бы он не нашел для их обработки соответствующего математического метода. Больше того, он фактически и заявляет время от времени, что подменяет физику математикой. Категорически утверждает, что «исследует не виды сил и свойств их, а лишь их величины и математические соотношения между ними». (Между прочим, схожие фразы встречаются и в научных трудах, выходящих в наши дни первым изданием. Только относятся эти труды к лингвистике, антропологии, истории, куда математика лишь начинает проникать).
Переход на язык математики позволял строго доказывать свою правоту оппонентам. Но дело было не только в этом. В физике накопилось столько определений понятия «сила», столько предполагаемых разновидностей сил, что отказ от разбирательства, какие силы что собой представляют, переход к исследованию одних лишь величин да соотношений их позволяли Ньютону сделать свое учение единообразным, стройным. Он выполнил, наконец, тот завет Галилея о правилах чтения книги по имени Вселенная, которому сам Галилей был лишь частично верен.
Ньютон сменил непрочный фундамент под законами Кеплера, очистил их от мистической шелухи, отпугивавшей Галилея (хотя, подчеркнем еще раз, сами законы, вероятно, отпугивали Галилея еще больше, чем их обоснование), показал связь между законами Кеплера и Галилеевой силой тяжести, сделал три закона Кеплера следствиями одного закона всемирного тяготения, оправдал кеплеровскую теорию приливов.
Дмитрий Иванович Менделеев особенно ценил в законе всемирного тяготения то, что его созданием Ньютон показал возможность «с единой точки зрения охватить весь механизм мировых явлений». Нельзя недооценивать силу этого закона и как примера, поданного Ньютоном будущим ученым, включая, конечно, и Менделеева.
Итак, союз математики, философии и физики, опирающихся на факты, привел к рождению нового закона.
Вот он:
Здесь в числителе произведение
Не все было, правда, в порядке и с Луной. Но ученые понимали, что та слишком близко к Земле, а взаимосвязи между соседями, живущими почти рядом, гораздо, как известно, богаче и сложнее, чем между теми, кто разделен большими расстояниями.
Тут следует заметить, что закон Ньютона не был теоретическим в современном смысле этого слова. Формула Ньютона «просто» представляла собой математическое описание опытного факта. Так что Ньютон имел право — во всяком случае по поводу закона всемирного тяготения — сказать о себе, что он в науке строит достоверности (а не какие-то там гипотезы!).
В конце предыдущей главы рассказывалось о том, как некоторые физики с разных сторон подбирались к закону всемирного тяготения, как Гук пришел к закону «обратных квадратов» и т. п. Казалось бы, идея носилась в воздухе, наука созрела для того, чтобы ее освоить. Между тем дальнейшая история закона всемирного тяготения, сформулированного Ньютоном, ясно показывает, что дело обстояло совсем не так. Единодушного восторга ученые отнюдь не выразили. Одни не признавали закон из-за его чрезмерной простоты, другие — из-за чрезмерной сложности пути, по которому Ньютон пришел к своему великому закону.