А началась проверка давно. Исаак Ньютон писал: «Падение всех тяжелых тел на землю с одинаковой высоты… происходит в одинаковое время, как это уже наблюдалось другими; точнейшим же образом это может быть установлено по равенству времен качаний маятников. Я произвел такое испытание для золота, серебра, свинца, стекла, песка, обыкновенной соли, дерева, воды, пшеницы. Я заготовил две одинаковые круглые коробочки; одну из них я заполнил деревом, в другую положил кусочек золота того же веса (насколько смог точно), причем так, чтобы у них соответствовали центры качаний. Коробочки, подвешенные на равных нитях 11 футов длиной, образовали два маятника, совершенно одинаковых по весу, форме и сопротивлению воздуха; будучи помещены рядом, они при равных качаниях шли вместе вперед и назад в продолжение весьма долгого времени. Следовательно, количество вещества (масса) в золоте относилось к количеству вещества в дереве как действие движущей силы на все золото к ее действию на все дерево, т. е. как вес одного к весу другого. То же самое было и для других тел. Для тел одинакового веса разность в количестве вещества (массе) даже меньше одной тысячной доли полной массы могла бы быть с ясностью обнаружена этими опытами».
По сути, да и замыслу, это проверка еще не провозглашенного принципа эквивалентности.
Великолепно поставленный эксперимент! А что точность его равнялась примерно одной тысячной — так ведь опыт был поставлен в XVII веке!
Блестящего результата добился в конце XIX века барон Лоранд Этвеш, чье имя носит теперь Будапештский университет. Он проверил эквивалентность тяжелой и инертной масс с точностью до пяти миллиардных долей, Причем он сравнивал поведение в гравитационном поле таких разных вещей, как платина и дерево, медь и сало, вода и асбест… Шестьдесят с лишним лет эта точность оставалась непревзойденной, пока в Принстоне профессор Р. Дике не поставил в 1961–1964 годах новый эксперимент с алюминием и золотом. Одинаковые массы этих двух веществ были укреплены на коромысле, подвешенном на тонкой проволоке (получился крутильный маятник). Они притягиваются не только к Земле, но и к Солнцу. Если одно из этих тел будет притягиваться к Солнцу сильнее хотя бы на три стомиллиардные доли, коромысло сдвинется, чуть-чуть закрутив проволоку. Чтобы добиться такой точности измерений, прибор поместили в вакуумную камеру, давление в которой составляло всего одну стомиллиардную долю атмосферного давления, а вакуумная камера была установлена в специальной шахте на глубине четырех метров и защищена от воздействия колебаний температуры. Радиоэлектронное устройство могло регистрировать крутильные колебания с точностью до одной стомиллионной доли сантиметра.
Надо, пожалуй, добавить, что эксперименты по уточнению принципа эквивалентности масс показали еще, что ему подчиняются в высокой степени и массы разных элементарных частиц. Золото состоит из нейтронов на шестьдесят процентов, алюминий же только на пятьдесят. Раз это обстоятельство не сказалось на результатах опыта Дике, значит, нейтроны и протоны обладают одним и тем же ускорением свободного падения с точностью до десяти в минус десятой степени (одной десятимиллиардной доли), а электроны — тем же ускорением, что и эти тяжелые ядерные частицы, с точностью до десяти в минус седьмой степени (одной десятимиллионной).
Новый рекорд, однако, в отличие от предыдущего, продержался недолго. В. Б. Брагинский и В. И. Панов в Московском государственном университете вскоре после опытов Дике сумели поднять точность еще в тридцать раз.
Сотрудники МГУ сохранили схему опыта, заменив золото платиной и укрепив на концах коромысла восемь грузов: четыре из алюминия, четыре из платины. Давление в вакуумной камере сделали еще меньшим, чем в опыте Дике, обеспечили тепловую и магнитную изоляцию установки…
Колебания крутильного маятника должны были записываться на фотопленке, на которую падал отразившийся от установленного на коромысле зеркальца луч лазера.
Сам Дике был поражен столь быстрым улучшением его результатов. А покойный академик АН УССР А. 3. Петров так оценил опыт в МГУ: «Добиться такой точности — это, знаете, удивительно. Вдвойне приятно, когда этого добиваются твои соотечественники. И, кроме того, что самое главное, сразу же напрашивается вывод: если удалось достичь повышения точности в этой области, то, значит, реально ожидать в ближайшее время и повышения точности в других, соседних экспериментах по поиску гравитационных волн!»
Американские физики Уитерборн и Фоэйрбэнк непосредственно измерили ускорение свободного падения электронов и нашли, что оно отличается от ускорения земного тяготения не более чем на десять процентов. Харвей, Дабе и другие провели аналогичные опыты с нейтронами. Здесь различие не могло превышать и одного процента.
Проценты — после миллиардных и триллионных долей? Но ведь одно дело эксперименты с обычными телами, а другое — непосредственно с элементарными частицами, особенно заряженными, чувствительными к случайным электромагнитным полям.