Таковой является теория квантовой гравитации. Мы еще точно не знаем, какую форму примет правильная теория квантовой гравитации. Лучшим кандидатом из имеющихся в настоящий момент является теория суперструн, но в ней еще есть ряд нерешенных проблем. Однако можно предположить, какие свойства будут наличествовать в любой жизнеспособной теории. Одно из них – идея Эйнштейна о том, что влияние гравитации можно представить как искривление или возмущение (искажение) пространства-времени материей и заключенной в ней энергией. Объекты стремятся следовать за ближайшим телом по прямой в искривленном пространстве. Однако, поскольку оно искривлено, их пути оказываются изогнутыми словно бы гравитационным полем.
Другой ожидаемый элемент окончательной теории – это предположение Ричарда Фейнмана относительно того, что квантовую теорию можно сформулировать как «сумму предысторий». В простейшей форме идея заключается в том, что каждая частица имеет все возможные пути, или истории, в пространстве-времени. Каждый путь, или история, имеет некую вероятность, зависящую от его формы. Чтобы эта идея заработала, нужно рассмотреть истории во мнимом, а не в реальном времени, где мы якобы живем. Термин «мнимое время» напоминает нам научную фантастику, но на самом деле это хорошо проработанная математическая концепция. В некотором смысле мнимое время можно представить направлением времени, перпендикулярным к реальному времени. Складываются вероятности всех предысторий частицы с определенными свойствами, такими как прохождение через определенные точки в определенное время. Потом нужно экстраполировать результат обратно в реальное пространство-время, в котором мы живем. Это не самый известный подход к квантовой теории, но он дает те же результаты, что и другие методы.
В случае квантовой гравитации идея Фейнмана о сумме историй включает суммирование всевозможных историй по Вселенной – то есть разных искривленных пространств-времен. Они представляют собой историю Вселенной и всего сущего в ней. Тут придется определить, какой класс из возможных искривленных пространств включать в сумму историй. Выбор этого класса пространств определяет, в каком состоянии находится Вселенная. Если в класс искривленных пространств, определяющий состояние Вселенной, войдут пространства с сингулярностями, то вероятность существования таких пространств не удастся определить теорией. Вместо этого вероятностям придется присвоить значения некоторым произвольным образом. Это означает, что наука не может предсказать вероятности таких сингулярных историй для пространства-времени. Таким образом, она не может сказать, как Вселенная должна себя вести. Возможно, однако, что Вселенная находится в состоянии, определяемом суммой, включающей в себя только несингулярные искривленные пространства. В таком случае научные законы объяснят Вселенную полностью, и чтобы определить, как она возникла, не нужно будет обращаться к какой-то внешней по отношению к ней силе. Предположение, что состояние Вселенной определяется суммой только несингулярных историй, в какой-то степени напоминает ситуацию с пьяным, ищущим свои ключи под фонарем: возможно, он потерял их не там, но это единственное место, где их можно найти. Аналогично, Вселенная может быть в состоянии, определяемом суммой не только несингулярных историй, но это единственное ее состояние, в котором наука может предсказать, какой она будет.
В 1983 году Джим Хартл и я предложили получать состояние Вселенной как сумму определенного класса историй. Этот класс состоял из искривленных пространств без сингулярностей, пространств конечного размера, но не имеющих краев и границ, вроде земной поверхности, но с еще двумя измерениями. Земная поверхность имеет конечную площадь, но не имеет сингулярностей, краев и границ. Я проверил это экспериментально: объехал вокруг Земли и нигде с нее не упал.
Предложение, сделанное Хартлом и мной, можно перефразировать так: «Граничным условием Вселенной является то, что она не имеет границ». Только если Вселенная находится в безграничном состоянии, научные законы сами по себе определяют вероятности каждой возможной истории. Таким образом, только в этом случае известные законы определят, как поведет себя Вселенная. Если она находится в каком-либо другом состоянии, класс искривленных пространств в сумме историй включит пространства с сингулярностями. Чтобы определить вероятности таких сингулярных историй, нужно призвать какой-то другой принцип, отличный от известных научных законов. Этот принцип будет чем-то внешним по отношению к Вселенной. Мы не можем вывести его из чего-то внутри нее. С другой стороны, если Вселенная находится в безграничном состоянии, теоретически мы могли бы полностью определить, как она поведет себя, с точностью, ограниченной принципом неопределенности.