Уилер поставил перед собой задачу определить все объекты, которые могут быть сделаны из холодного неорганического вещества. Это могут быть малые объекты типа железных шариков, более тяжелые объекты, такие как мертвые железные планеты, и еще более тяжелые объекты: белые карлики, нейтронные звезды и какие-то другие типы холодных и мертвых объектов, допускаемых законами физики. Уилер хотел получить полный каталог холодных и мертвых объектов.
Уилер работал во многом подобно Оппенгеймеру — в окружении аспирантов и постдоков. Среди них для работы над деталями уравнения состояния холодного мертвого вещества, он выделил Б. Кента Гаррисона, сурового мормона из штата Юта. Уравнение состояния позволило бы детально описать, как возрастает давление вещества, если последовательно сжимать вещество, до больших и больших плотностей, или, что то же самое, как с увеличением плотности изменяется сопротивление сжатию.
Уилер был прекрасно подготовлен к тому, чтобы задать направление вычислениям Гаррисона уравнения состояния холодного мертвого вещества, поскольку был крупнейшим экспертом в области законов
| Джон Арчибальд Уилер, около 1954 г. [Фото Блэкстона-Шелбурна, Нью-Йорк, предоставлено Дж.А.Уилером] |
физики, управляющих структурой материи, законов квантовой механики и ядерной физики. В течение предшествующих двадцати лет он создал мощную математическую модель, описывающую поведение атомных ядер; вместе с Нильсом Бором он разработал законы атомного распада (деление на части тяжелых атомных ядер, таких как уран и плутоний, лежащее в основе атомной бомбы); он был также руководителем группы, разработавшей американскую водородную бомбу. Опираясь на свой опыт, он помог Гаррисону обойти все трудности анализа.
Результатом их анализа стало уравнение состояния холодного, мертвого вещества. При плотностях белых карликов это было то же уравнение состояния, что и использованное Чандрасекаром (глава 4); при плотностях нейтронной звезды оно совпадало с результатом Оппенгеймера и Волкова; при плотностях ниже плотности белых карликов и в промежутке между белыми карликами и нейтронными звездами оно было совершенно новым.
Врезка 5.5
Рисунок внизу показывает уравнение состояния Гаррисона—Уилера. По горизонтали отложена плотность вещества. По вертикали — сопротивление сжатию (или адиабатический индекс, как обычно называют его физики) — увеличение давления в процентах, сопровождающее 1 %-ное увеличение плотности. В квадратах рядом с кривой показано то, что происходит с веществом на микроскопическом уровне при его сжатии от низких до высоких плотностей. Размер показанной области указан в сантиметрах сверху квадрата.
| V |
| 2 х 10 8 смКаждый атом сжат в два раза. Электроны противодействуют сжатию |
|---|
Электроны, забыв про ядра железа, начинают соединяться в пары; давление вырождения (Чандрасекар)
,л
см| Электроны становятся релятивистскими ,(то же) | |||||
|---|---|---|---|---|---|
| и | 1 х | 10-“ | см | fY') | |
| 1 | Электроны, вжатые в ядра, | « Лъ •у | ( о * «» | ||
| превращают протоны в нейтроны; нейтроны начинают просачиваться из ядер; вскоре они станут доминировать | |||||
1
\01
1058 10ь10е
Ядерные силы, которые теперь становятся отталкивающими, увеличивают давление по сравнению со штриховой кривой Оппенгеймера-Волкова
10.“' см
Нейтроны, соединившись, в отдельных ячейках в пары, вызывают давление вырождения (Оппенгеймер, Волков). Ядерные силы притяжения уменьшают давление по сравнению со штриховой кривой Оппенгеймера-Волкова
Ю10
1012 101410
16
Плотность, г/см3
При нормальных плотностях холодное мертвое вещество состоит из атомов железа. Если бы оно состояло из атомов, имеющих более тяжелые ядра, то из него можно было бы извлечь энергию, расщепляя ядра до ядер железа в реакциях деления (как в атомной бомбе). Если же оно состояло бы из более легких атомов, то энергия могла бы выделиться при объединении ядер в ядра железа в реакциях термоядерного синтеза (как в водородной бомбе).
В форме железа вещество уже не может никаким образом высвободить ядерную энергию. Ядерные силы удерживают нейтроны и протоны в железных ядрах сильнее, чем в любых других видах атомных ядер.