Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

Представьте себе семью человекоподобных созданий, живущих во вселенной, имеющей всего два пространственных измерения. Пусть их вселенная искривлена (имеет вид поверхности с чашеобразной впадиной; см. рис. 3.2). Сами создания также двумерны; их размер в направлении, перпендикулярном поверхности, будем считать бесконечно малым. Кроме того, они не могут выглянуть из этой поверхности: световые лучи в их вселенной распространяются строго в пределах поверхности и никогда не покидают ее. У этих «плоскатиков», как я буду их называть, нет никакого способа узнать о том, что происходит вне их двумерного мира.

Плоскатики могут изучать геометрию своей вселенной, исследуя прямые линии, треугольники и окружности. Их прямые — это геодезические, о которых говорилось в главе 2 (рис. 2.4 и соответствующие пояснения): самые прямые линии, которые существуют в этом двумерном мире. На дне впадины, которое на рис. 3.2 имеет форму сферического сегмента, эти прямые линии являются частями больших кругов, подобно земному экватору или параллелям. Вдали же от впадины эта вселенная плоская, и прямые линии представляют собой прямые в нашем обычном понимании.



3.2. Двумерная вселенная, населенная «плоскатиками»


Если плоскатики рассмотрят любую пару параллельных прямых в этой плоской части вселенной (например, II и 12 на рис. 3.2), они обнаружат, что эти линии никогда не пересекаются. Таким образом, они могут убедиться, что эта часть их пространства действительно плоская. С другой стороны, если они построят параллельные линии L3 и L4 вдали от впадины, а затем продлят их до нее, стараясь сохранять их прямыми, насколько это возможно (так, чтобы они оставались геодезическими), они увидят, что на дне впадины эти линии пересекаются. Отсюда они могут заключить, что эта область пространства искривленная.

Плоскатики могут также проверить то, что область вдали от впадины плоская, и измерить кривизну пространства внутри впадины при помощи окружностей и треугольников. В плоской области длина любой окружности равна числу я (3,14159265), умноженному на ее диаметр. Во впадине длины окружностей будут меньше, например, длина большого круга вблизи ее дна, изображенного на рис. 3.2, равна двум с половиной диаметрам. Если плоскатики построят треугольник, стороны которого — прямые линии (геодезические), и вычислят сумму его внутренних углов, они получат 180° для треугольников в плоской области и больше, чем 180°, если треугольник находится в искривленной части вселенной.

Обнаружив посредством таких измерений, что их вселенная искривлена, плоскатики могут начать строить предположения о существовании трехмерного пространства, в котором находится их двумерная вселенная или в которое она вложена.

Они могут назвать это трехмерное пространство гиперпространством и фантазировать о его свойствах. Например, они могут пред-положить, что оно плоское в евклидовом смысле, т. е. параллельные прямые в нем никогда не пересекаются.

Нам с вами представить такое гиперпространство совсем несложно — это наше обычное трехмерное пространство. Однако плоскатикам сделать это было бы очень непросто. Более того, у них не было бы никакой возможности проверить, существует ли это гиперпространство на самом деле, ведь ни выйти из своей двумерной вселенной, ни бросить взгляд наружу из нее они не могут. Для них гиперпространство навсегда осталось бы лишь гипотезой.

Это третье измерение гиперпространства не имеет никакого отношения ко времени плоскатиков, которое они также могли бы назвать третьим измерением. В общей сложности, размышляя о гиперпространстве, плоскатики оперировали бы четырьмя измерениями: двумя пространственными измерениями своей вселенной, одним временным и одним дополнительным пространственным измерением гиперпространства.

* * *

Мы с вами — объемные существа и живем в трехмерном пространстве. Если бы мы провели исследования геометрии нашего пространства внутри и вблизи звезды шварцшильдовской геометрии, мы обнаружили бы, что оно искривлено, подобно тому, как в нашем примере была искривлена вселенная плоскатиков.

Можно строить предположения о высших измерениях — плоском гиперпространстве, в которое вложено наше искривленное трехмерное пространство. Оказывается, такое гиперпространство должно быть шестимерным, чтобы в него можно было вложить искривленное трехмерное пространство, подобное нашему (а если вспомнить, что наша Вселенная имеет еще временное измерение, всего измерений оказывается семь).

Наглядно изобразить наше трехмерное пространство, вложенное в шестимерное гиперпространство, мне ничуть не легче, чем плоскатикам — свое двумерное, вложенное в трехмерное. Однако существует прием, который окажет нам неоценимую помощь (см. рис. 3.3).



Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
«Аполлон-8»
«Аполлон-8»

В августе 1968 г. НАСА приняло смелое решение: запустить первый обитаемый космический корабль к Луне. Всего год назад три астронавта погибли в пожаре во время испытаний, и с тех пор программа «Аполлон» терпела одну неудачу за другой. Тем временем СССР выигрывал космическую гонку, холодная война становилась все жарче с каждым месяцем, и обещание президента Кеннеди отправить человека на Луну к концу десятилетия казалось несостоятельным. Но когда Фрэнка Бормана вызвали на секретную встречу и предложили его экипажу опасную миссию, он без колебаний согласился.Эта книга – первая подробная история «Аполлона-8». Джеффри Клугер предлагает читателю захватывающую историю о миссии, которая была столь рискованной, что воспринималась почти как лотерея, но, увенчавшись успехом, ознаменовала начало новой эры в освоении космического пространства.

Джеффри Клюгер

Астрономия и Космос