Читаем Черные дыры и складки времени полностью

Почему эти волны такие слабые? Потому что сливающиеся черные дыры находятся от нас так далеко. Амплитуда гравитационных волн, так же как и световых волн, ослабляется обратно пропорционально пройденному расстоянию. Когда волны еще находятся близко к черным дырам, их амплитуда имеет порядок 1, что означает, что они сжимают и растягивают любой объект на величину, сравнимую с размером объекта. Человек был бы немедленно убит таким сильным растяжением или сжатием. Однако когда волны достигают Земли, их сила ослабляется примерно на величину (1/30 окружности черной дыры)/(рассто-яние, пройденное волной)[95]. Для черных дыр, имеющих массу в 10 солнечных, находящихся на расстоянии в миллиард световых лет от нас, эта амплитуда волны (1/30) х (180 километров окружности гори-зонта)/(миллиард световых лет) ≈ 10-21. Поэтому волны изменяют размер океанов Земли на величину 10-21 х (107 метров размера Земли) ≈ 10-14 метра, что в 10 раз больше размеров атомного ядра.

Совершенно безнадежно, конечно, пытаться измерить такой крошечный прилив на поверхности волнующегося океана. Не таким безнадежным делом оказываются, однако, перспективы измерить приливные силы гравитационных волн, действующие на тщательно сконструированный лабораторный прибор — детектор гравитационных волн.


Болванки


Джозеф Вебер был первым человеком, который имел достаточно интуиции, чтобы понять, что попытки детектирования гравитационных волн совсем не безнадежны. Он был выпускником Военно-морской академии США со степенью бакалавра инженерного дела. Во время второй мировой войны он служил на авианосце Лексингтон, пока тот не затонул во время боя в Коралловом море, затем стал командным офицером на охотнике за подводными лодками № 690 и сопровождал бригадного генерала Теодора Рузвельта младшего и 1900 десантников во время высадки на берег при вторжении в Италию в 1943 г. После войны он стал главой Отдела электронного противодействия Бюро кораблей военно-морских сил США. Его репутация эксперта по радио и радарным технологиям была настолько велика, что в 1948 г. ему была предложена и им принята позиция профессора электротехники в Мэрилендском университете — полного профессора в возрасте двадцать девять для всего лишь выпускника колледжа со степенью бакалавра.

Преподавая электротехнику в Мэриленде, Вебер готовился к изменениям в своей карьере: он работал над диссертацией и получил степень Ph.D в области физики[96] в Католическом университете, частично под руководством того же человека, который был руководителем Джона Уиллера, Карла Херцфельда. От Херцфельда Вебер узнал достаточно о физике атомов, молекул и излучения, чтобы в 1951 г. изобрести собственный вариант лазера, но у него не было тогда возможности для экспериментальной демонстрации своей концепции. Тогда же, когда Вебер опубликовал свое предложение, две другие исследовательские группы: одна в Колумбийском университете, возглавляемая Чарльзом Таунсом, а другая в Москве, под руководством Николая Геннадьевича Басова и Александра Михайловича Прохорова, независимо изобрели альтернативные варианты механизма и создали рабочие варианты лазеров.[97] И хотя статья Вебера была первой публикацией по поводу механизма работы лазеров, он не получил никакого признания: Нобелевская премия и патенты ушли ученым Москвы и Колумбии[98]. Разочарованный, но сохранивший дружеские отношения с Таунсом и Басовым, Вебер задумался о новом направлении исследований.

Как часть этих исследований Вебер провел год в группе Джона Уиллера, став специалистом в области общей теории относительности и сделав вместе с Уиллером теоретические исследования о свойствах гравитационных волн, следующих из этой теории. К 1957 г. он нашел свое новое направление. Он начал разворачивать первую в мире программу детектирования и слежения за гравитационными волнами.

В конце 1957, весь 1958 и начало 1959 г. Вебер пытался изобрести различные схемы детектирования гравитационных волн. Это были упражнения ума с помощью карандаша и бумаги, а не экспериментальные усилия. Он заполнил идеями, возможными конструкциями детектора и вычислениями четыре 300-страничные тетради. Одна за другой идея отставлялась как бесперспективная. Одна конструкция за другой оказывалась малочувствительной. Но некоторые все-таки оставляли надежду, и из них Вебер в конце концов выбрал конструкцию, основанную на цилиндрической алюминиевой болванке, длиной около 2 метров, диаметром в полметра, весящей 1 тонну, ориентированную широкой частью к приходящей волне (рис. 10.4).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже