На диаграммах рис. 13.4 изображена последовательная эволюция звезды. Звезда начинает коллапсировать в нашей Вселенной
Я понимаю, что все это звучит как чистая научная фантастика. В свое время черные дыры явились прямым следствием решения Шварцшильда, полученного для уравнения поля Эйнштейна (глава 3); точно так же предложенный сценарий эволюции — непосредственный вывод из другого решения уравнения Эйнштейна, решения, найденного Гансом Райсснером и Гуннаром Нордстремом в 1916–1918 гг., но не понятого ими до конца. В 1960 г. ученики Уилера, Дитер Брилл и Джон Грейвс, раскрыли физический смысл решения Райсснера — Нордстрема. Вскоре стало ясно, что это решение с небольшими изменениями можно применить для описания коллапсирующей и взрывающейся звезды (рис. 13.4). Такая звезда отличается от звезды Оппенгеймера-Снайдера только одним существенным моментом: она электрически заряжена, и при ее сжатии формируется сильное электрическое поле, которое некоторым образом причастно к взрыву, происходящему со звездой в другой вселенной.
Подведем итог. В 1964 г. конечные стадии эволюции звезды, которая в результате схлопывания превращается в черную дыру, выглядели следующим образом (во многом благодаря стараниям Уилера, который считал эти исследования основным делом своей жизни):
1. Известно решение уравнения Эйнштейна, предложенное Оппенгеймером и Снайдером для звезды идеальной формы (в том числе для идеальной сферы). Из этого решения следует, что в центре черной дыры возникает сингулярность с бесконечно большими приливными силами гравитации. Эта сингулярность захватывает, разрушает и проглатывает абсолютно все, что попадает в черную дыру.
2. Известно также другое решение уравнения Эйнштейна (частный случай решения Райсснера — Нордстрема) для звезды, имеющей не вполне идеальную форму или сферическую форму, но при этом еще электрический заряд. Глубоко внутри черной дыры такая звезда отпочковывается от нашей Вселенной, прикрепляется к другой вселенной (или к отдаленной области нашей собственной Вселенной) и там взрывается.
3. Было далеко не ясно, какое из этих двух решений (а возможно, ни то и ни другое) «устойчиво по отношению к малым, случайным возмущениям» и, следовательно, может иметь место в реальной Вселенной.
4. В то же время Халатников и Лифшиц утверждали, что сингулярности
5. По поводу этого утверждения Халатникова и Лифшица среди физиков существовал некий скептицизм, по крайней мере, в Принстоне. Возможно, он был отчасти вызван желанием Уилера, чтобы эти сингулярности существовали в природе, ибо они могли стать вожделенным местом для слияния общей теории относительности и квантовой механики.
1964-й год стал переломным моментом. В этом году Роджер Пенроуз революционизировал математические инструменты, которыми мы с тех пор пользуемся для анализа свойств пространства-времени. Его революция была настолько важной и оказала настолько сильное влияние на поиск «священного Грааля» Уилера, что я отвлекусь от основного повествования и уделю несколько страниц в книге рассказу о Пенроузе и его революции.