Лаборатория и приборы системы отсчета не обязательно должны быть реальными. Они, естественно, могут быть воображаемыми, существующими лишь в сознании физика, который, например, задает вопрос: «Если бы я, находясь на борту космического корабля, летящего в поясе астероидов, стал измерять размер одного из них, что бы у меня получилось?». Этот физик просто представляет себе, что у него есть система отсчета (лаборатория), связанная с космическим кораблем, и что он использует приборы в этой лаборатории для проведения своих измерений.
Эйнштейн сформулировал свой принцип относительности не для произвольных систем отсчета, а для совершенно определенного класса систем: систем (лабораторий), на которые не действуют никакие внешние силы и которые, следовательно, движутся свободно (по инерции), сохраняя свое движение равномерным, таким, как оно было вначале. Такие системы Эйнштейн назвал инерциальными, поскольку их движение определяется исключительно их инерцией.
Система отсчета, связанная с взлетающей ракетой (лаборатория внутри этой ракеты),
Самое главное, рядом с любым массивным телом, например, таким, как Земля,
Понимание того, что такое система отсчета, дает нам возможность более глубоко и точно сформулировать принцип относительности Эйнштейна:
• «Любое свободное тело (такое, на которое не действуют никакие силы), которое изначально находилось в состояния покоя, будет всегда оставаться в покое. Любое свободное тело, которое в инерциальной системе отсчета изначально двигалось, будет продолжать двигаться прямолинейно с постоянной скоростью.» Поскольку у нас есть все основания считать, что данная релятивистская формулировка первого закона Ньютона справедлива, по крайней мере, в одной инерциальной системе отсчета, то, согласно принципу относительности, она должна быть справедлива во всех остальных таких системах, независимо от того, в каком месте Вселенной они находятся и как быстро они движутся.
• Уравнения Максвелла должны иметь одинаковую форму во всех системах отсчета. В ньютоновской физике найти такую форму не удавалось (и как следствие, магнитные силовые линии оказывались замкнутыми в одних системах отсчета и разорванными в других), что глубоко беспокоило Лоренца, Пуанкаре, Лармора и Эйнштейна. Для Эйнштейна было совершенно неприемлемо то, что эти уравнения были просты и красивы в системе отсчета, связанной с эфиром, но оказывались сложными и уродливыми в остальных, движущихся относительно эфира системах отсчета. Перестроив основы физики, Эйнштейн добился того, что уравнения Максвелла приобрели одинаковую, простую и красивую форму в любой системе отсчета (и магнитные силовые линии были всегда замкнуты) в соответствии с его принципом относительности.